IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 1, FIRST QUARTER 2017 465

Identifying Propagation Sources in Networks:
State-of-the-Art and Comparative Studies

Jiaojiao Jiang, Sheng Wen, Shui Yu, Senior Member, IEEE, Yang Xiang, Senior Member, IEEE,
and Wanlei Zhou, Senior Member, IEEE

Abstract—TIt has long been a significant but difficult problem
to identify propagation sources based on limited knowledge of
network structures and the varying states of network nodes. In
practice, real cases can be locating the sources of rumors in online
social networks and finding origins of a rolling blackout in smart
grids. This paper reviews the state-of-the-art in source identifi-
cation techniques and discusses the pros and cons of current
methods in this field. Furthermore, in order to gain a quanti-
tative understanding of current methods, we provide a series of
experiments and comparisons based on various environment set-
tings. Especially, our observation reveals considerable differences
in performance by employing different network topologies, vari-
ous propagation schemes, and diverse propagation probabilities.
We therefore reach the following points for future work. First,
current methods remain far from practice as their accuracy in
terms of error distance (§) is normally larger than three in most
scenarios. Second, the majority of current methods are too time
consuming to quickly locate the origins of propagation. In addi-
tion, we list five open issues of current methods exposed by the
analysis, from the perspectives of topology, number of sources,
number of networks, temporal dynamics, and complexity and
scalability. Solutions to these open issues are of great academic
and practical significance.

Index Terms—Complex network, propagation, source identifi-
cation, centrality measures.

I. INTRODUCTION

N THE modern world, the ubiquity of networks has

made us vulnerable to various network risks. For instance,
rumors spread incredibly fast in online social networks, such
as Facebook and Twitter [1]. Computer viruses propagate
throughout the Internet and infect millions of computers [2]. In
smart grids, isolated failures could lead to rolling blackouts in
the networks [3]. Every year, tremendous damages caused by
those risks have incurred massive losses to society in finance
and labor [4].

Risks, in terms of rumors, computer viruses or smart grid
failures, propagate on various networks. From both practical
and technical aspects, it is of great significance to identify
propagation sources. Practically, it is important to accurately
identify the ‘culprit’ of the propagation for forensic purposes.
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Moreover, seeking the propagation origins as quickly as possi-
ble can find the causation of risks, and therefore, diminish the
damages. Technically, the work in this field is aimed at identi-
fying the sources of propagations based on limited knowledge
of network structures and the states of a portion of nodes.
In academia, traditional identification techniques, such as IP
traceback [5] and stepping-stone detection [6], are not suf-
ficient to seek the propagation origins of risks, as they only
determine the true source of packets received by a destination.
In the propagation of risks, the source of packets is almost
never the origin of the propagation but just one of the many
propagation participants [7]-[9]. Methods are needed to find
propagation sources higher up in the application level and
logic structures of networks, rather than in the IP level and
packets.

In the past few years, researchers have proposed a series
of methods to identify propagation sources. The initial meth-
ods are designed to work on tree-like networks and with
propagation following the traditional susceptible-infected (SI)
model [10]-[13]. Further, some other work are proposed to
deal with tree-like networks but with different epidemic mod-
els, such as the susceptible-infected-recovery (SIR) model and
the susceptible-infected-susceptible (SIS) model [14]-[16].
The constraints on tree-like topologies were then relaxed
to generic network topologies in source identification tech-
niques [17]-[19]. In addition, researchers proposed methods to
identify propagation sources by first injecting sensors into net-
works [20]-[22]. In many ways, source identification requires
either high computational complexity to find near-optimal
solutions, or simplified heuristics to achieve suboptimal perfor-
mance. In order to summarize the state-of-the-art and to benefit
future research, we are motivated to provide a survey about
current work in this field. To the best of our knowledge, this is
the first comprehensive survey that focuses on the techniques
of seeking propagation origins in various networks.

This survey consists of three main parts. We list the con-
tribution and usage of each part as follows. First, we review
existing source identification methods and analyze their pros
and cons. This part sheds light on the basic ideas of current
work to readers. Second, comparative studies are provided
according to various experiment settings and scenarios. The
results provide readers a numerical understanding of existing
methods. Third, we summarize the analysis and comparative
studies of source identification methods, and further list cur-
rently unsolved problems in this field. The significance of
addressing these problems is analyzed in this part.
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(A) Complete Observation
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(C) Sensor observation.

This survey is structured as follows. In Section II, we intro-
duce some basic knowledge used in this article. The analysis
of existing methods is presented in Section III. Section IV
shows comparative studies followed by Section V which pro-
vides extensive discussion on critical problems in this field.
We finally conclude this survey in Section VI.

II. PRELIMINARIES

We introduce preliminary knowledge of source identifi-
cation in this section. It consists of observation categories,
epidemic models and centrality measures. For convenience,
we borrow notions from the area of epidemics to represent
the states of nodes in networks. A node being infected stands
for a user believing rumors, viruses having compromised a
computer, or a power station being out of operation. Reader
can derive analogous meanings for a node being susceptible
or recovered.

A. Categories of Observations

One of the major premises in source identification problems
is the observation of node states during the propagation pro-
cess. Diverse observations lead to a great variety of methods
in this field. According to the literature, there are three main
categories of observations:

Complete Observations: Given a time t during the propa-
gation, this type of observation presents the exact state for
each node in the network at time 7. The state of a node
stands for the node having been infected or recovered, or
remaining susceptible. This type of observation provides com-
prehensive knowledge of a transient status of the network.
Through this type of observation, source identification tech-
niques are advised with sufficient knowledge. An example of
the complete observation is shown in Fig. 1(A).

Snapshots: Snapshot provides partial knowledge of network
status at a given time ¢ [23]. Partial knowledge is presented
in four forms: (i) nodes reveal if they have been infected with

(B) Snapshot

(C) Sensor Observation

B Infected Sensor O Susceptible Sensor

Tlustration of three categories of observation in networks. (A) Complete observation; (B) Snapshot (taken the 4th type of snapshot for example);

probability u; (ii) we recognize all infected nodes, but can-
not distinguish susceptible or recovered nodes; (iii) only a
set of nodes was observed at time ¢ when the snapshot was
taken; (iv) only the nodes infected at time ¢ were observed.
An example of the snapshot is shown in Fig. 1(B).

Sensor Observations: Sensors are first injected into net-
works, and then the propagation dynamics over these sensor
nodes are collected, including their states, state transition time
and infection directions. In fact, sensors also stand for users
or computers in networks. The difference between sensors and
normal nodes in networks is that they are usually monitored by
network administrators in practice. Therefore, the sensors can
record all details of the rumor propagation over themselves,
and their life can be theoretically assumed to be everlast-
ing during the propagation dynamics. This is different from
the mobile sensor devices which may be out of work when
their batteries run out. As an example, we show the sensor
observation in Fig. 1(C).

An illustration of these three categories of observations
is shown in Fig. 2. It is clear that the snapshot and sen-
sor observation provide much less information for identifying
propagation sources compared with the complete observation.

B. Epidemic Models

Epidemic models are employed to describe the infection
and recovery processes of nodes in networks. As another
foundation for this field, different models refer to different
scenarios in seeking propagation origins. So far, researchers
mainly employ three epidemic models:

SI model: In this model, nodes are initially susceptible and
can be infected along with the propagation of risks. Once
a node is infected, it remains infected forever. This model
focuses on the infection process S — I, regardless of the
IECOVEry process.

SIR model: Recovery processes are considered in this
model. Similarly, nodes are initially susceptible and can be
infected along with the propagation. Infected nodes can then
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be recovered, and never become susceptible again. This model
deals with the infection and curing process S — [ — R.

SIS model: In this model, infected nodes can become sus-
ceptible again after they are cured. This model stands for the
infection and recovery process S — I — S.

There are also other epidemic models, such as SIRS [24],
SEIR [25], MSIR [26], SEIRS [27]. As far as we know, these
models have not been applied in source identification meth-
ods. Future work may take these models into consideration.
Readers could refer to the work of [2] and [28] for other
epidemic models.

C. Centrality Measures

Centrality measures are utilized to describe the influence of
nodes on propagation. Therefore, researchers employ various
centrality measures to identify potential propagation sources.
We list five commonly used centrality measures as follows.

Degree: The degree of a node in a network is the number
of edges incident to the node. In the real world, popular users
correspond to high-degree nodes in networks [29]. The theo-
retical bases of this measure are the scale-free and power-law
properties of the Internet with a few highly-connected nodes
playing a vital role in maintaining the network’s connectiv-
ity [30], [31]. We illustrate this centrality in Fig. 2(A).

Betweenness: The betweenness of a node stands for the
number of shortest paths passing through the node [32].
Researchers have found the nodes which do not have large
degrees in networks also play a vital role in the information
propagation [33], [34]. As shown in Fig. 2(B), the degree of
node E is smaller than node A, B, C and D. However, node E
is noticeably more important to the spread of rumors as it is
the connector of two large groups of users. To locate this kind
of nodes in networks, researchers introduced the measure of
betweenness.

B. Betweenness
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Tllustration of different centrality measures. (A) Degree; (B) Betweenness; (C) Closeness; (D) Jordan centrality; (E) Eigenvector centrality.

Closeness: The closeness of a node is defined as the mean
geodesic (i.e., shortest path) distance from this node to other
reachable nodes [31], [32], [35]. As shown in Fig. 2(C),
this measure discloses the nodes that can rapidly disseminate
information to all the other nodes. This measure concentrates
more on the information propagation speed rather than the
connectivity of a network [31].

Jordan centrality: The Jordan centrality of a node is defined
as the maximum geodesic distance from this node to any other
infected node in the network [36], [37]. Jordan centers stand
for the nodes that have minimum Jordan centrality. Suppose all
the nodes are infected in the graph in Fig. 2(D), then node A,
B, C are the Jordan centers of the graph with Jordan centrality
equals 3. Equivalently, the set of Jordan centers is equal to the
radius of a network [38].

Eigenvector centrality: Eigenvector centrality is defined as
the eigenvector of the adjacency matrix associated to the
largest eigenvalue [39], [40]. The eigenvector centrality of
a node is proportional to the sum of the centrality values
of all its neighboring nodes. In the real world, an important
node is characterized by its connectivity to other important
nodes. A node with a high eigenvector centrality value is a
well-connected node and has a dominant influence on the sur-
rounding network. As shown in Fig. 2(E), node V| and V3
have the highest eigenvector centrality in the graph. Readers
could refer to [39] for further computation methods.

III. SOURCE IDENTIFICATION TECHNIQUES

In this section, we analyze different techniques for source
identification and discuss their pros and cons. We classify
the source identification methods into three categories in
accordance with the three different types of observation
in Section IV-A. The taxonomy of current methods is shown in
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Fig. 3. Taxonomy of current source identification methods.

Fig. 3. We analyze each category of methods in the following
subsections, respectively.

A. Source Identification Methods With
Complete Observations

In this subsection, we summarize the methods of source
identification developed for complete observations. There are
two techniques in this category: rumor center and eigenvector
center based methods.

1) Single Rumor Center: Shah and Zaman [35], [41] intro-
duced rumor centrality for source identification. They assume
that information spreads in tree-like networks and the infor-
mation propagation follows SI model. They also assume each
node receives information from only one of its neighbors.
Since we consider the complete observations of networks, the
source node must be in the infected nodes. This method is pro-
posed for the propagation of risks originating from a single
source.

Method: Assuming an infected node as the source, its rumor
centrality is defined as the number of distinct propagation
paths originating from the source. The node with the maxi-
mum rumor centrality is called the rumor center. For regular
trees, the rumor center is considered as the propagation ori-
gin. For generic networks, researchers employ BFS trees to
represent the original networks. Each BFS tree corresponds to
a probability p of a rumor that chooses this tree as the propa-
gation path. In this case, the source node is revised as the one
that holds the maximum product of rumor centrality and p.

Analysis: In essence, the method is to seek a node from
which the propagation matches the complete observation the
best. As proven in [35] and [41], the rumor center is equiva-
lent to the closeness center for a tree-like network. However,
for a generic network, the closeness center may not equal the
rumor center. The effectiveness of the method is further exam-
ined by the work of [10]. The authors proved the rumor center
method can still provide guaranteed accuracy when relaxing
two assumptions: the exponential spreading time and the reg-
ular trees. This method was further explored in the snapshot

scenario that nodes reveal whether they have been infected
with probability w [11]. When p is large enough, the authors
proved the accuracy of the rumor center method can still be
guaranteed. Wang et al. [42] extend the discussion of the sin-
gle rumor center into a more complex scenario with multiple
snapshots. Although snapshot only provides partial knowledge
of rumor spreading, the authors prove that multiple indepen-
dent snapshots can dramatically improve temporally sequential
snapshots. The analysis in [42] suggests that the complete
observation for rumor source can be approximated by multiple
independent snapshots.

Discussion: There are several strong assumptions far from
reality. First, it is considered on a very special class of net-
works: infinite trees. Generic networks will be reconstructed
into BFS trees before seeking propagation origins. Second,
risks are implicitly assumed to spread in a unicast way (an
infectious node can only infect one of its neighbors at one time
step). Third, the infection probability between neighboring
nodes is equal to 1. In the real world, however, networks are
far more complex than trees, with information often spreading
in multicast or broadcast ways, and the infection probability
between neighboring nodes differing from each other.

2) Local Rumor Center: Following the assumptions of the
single rumor center method, Dong et al. [43] proposed a
local rumor center method to identify propagation sources.
This method designates a set of nodes as suspicious sources.
Therefore, it reduces the scale of seeking origins.

Method: Dong et al. [43] utilized the approaches and results
in [35] and [41] to identify the source of propagation in
networks. Following the definition of the rumor center, they
defined the local rumor center as the node with the highest
rumor centrality compared to other suspicious infected nodes.
The local rumor center is considered as the source node.

Analysis: For regular trees with node degree d, the authors
analyze the accuracy y of the local rumor center method. To
construct a regular tree, the degree d of each node should be
at least 2. However, Dong et al. [43] derived that the accuracy
of the local rumor center method follows O(1/4/n). Therefore,
when n is sufficiently large, the accuracy is close to 0
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when d = 2. As a result, d starts from 3 to infinity in the anal-
ysis. First, when the suspicious set degenerates into the entire
network, y grows from 0.25 to 0.307 as d increases from three
to infinity. This means that the minimum accuracy y is 25%
and the maximum accuracy is 30.7%. Second, when suspicious
nodes form a connected subgraph of the network, y signifi-
cantly exceeds 1/k when d = 3, where k is the number of sus-
picious nodes. Third, when there are only two suspect nodes,
y is at least 0.75 if d = 3, and y increases with the distance
between the two suspects. Fourth, when multiple suspicious
nodes form a connected subgraph, the accuracy y is lower
than when these nodes form several disconnected subgraphs.

Discussion: The local rumor center is actually the node with
the highest rumor centrality in the priori set of suspects. The
advantage of the local rumor center method is that it dramat-
ically reduces the source-searching scale. However, it has the
same drawbacks as the single rumor center method.

3) Multiple Rumor Centers: Luo et al. [12] extended the
single rumor center method to identify multiple sources. In
addition to the basic assumptions, researchers further assume
the maximum number of sources is known for the method of
identifying multiple rumor centers.

Method: Based on the definition of rumor centrality for a
single node, Luo et al. [12] extended rumor centrality for a set
of nodes, which is defined as the number of distinct propaga-
tion paths originating from the set. They propose a two-source
estimator to compute the rumor centrality when there are only
two sources. For multiple sources, they propose a two-step
method. In the first step, they assume a set of infected nodes
as sources. All infected nodes are divided into different par-
titions by using the Voronoi partition algorithm [44] on these
sources. The single rumor center method is then employed
to identify the source in each partition. In the second step,
estimated sources are calibrated by the two-source estimator
between any two neighboring partitions. These two steps are
iterated until the estimated sources become steady.

Analysis: Luo et al. [12] are the first to employ the rumor
center method to identify multiple sources. They further
investigate the performance of the two-source estimator on
geometric trees [41]. The accuracy approximates to one when
the infection graph becomes large. This method has also been
extended to identify multiple sources with snapshot. Because
snapshot can only provide partial knowledge about the spread-
ing dynamics of rumors in networks, Zang et al. [45] introduce
a score-based method to assess the states of other nodes in
networks, which indirectly form a complete observation on
networks.

Discussion: According to the definition of rumor central-
ity for a set of nodes, we need to calculate the number of
distinct propagation paths originating from the set. It is too
computationally complex to obtain the result. Even though
Luo et al. [12] have proposed a two-step method to reduce
the complexity, the two-step method still needs O(N*) com-
putations, where k is the number of source nodes. This method
can hardly be used in the real world, especially on large-scale
networks.

4) MDL: Prakash et al. [18], [46] proposed a minimum
description length (MDL) method for source identification.

This method is considered on generic networks. They assume
propagation follows SI model.

Method: Given an arbitrary infected node as the source
node, this corresponds to the probability of obtaining the
infection graph. For generic networks, it is too compu-
tationally expensive to obtain the probability. Therefore,
Prakash et al. [46] introduced an upper bound of the prob-
ability and sought the origin by maximizing the upper bound
instead. They claimed that to maximize the upper bound is to
find the smallest eigenvalue A, and the corresponding eigen-
vector u,,;, of the Laplacian matrix of the infection graph. The
Laplacian matrix is widely used in the spectral graph theory
and has many applications in various fields. This matrix is
mathematically defined as L = D —A, where D is the diagonal
degree matrix and A is the adjacency matrix. In Prakash ef al.’s
work [18], [46], the node with the largest score in the eigen-
vector iy, of the Laplacian matrix refers to the propagation
source.

Analysis: This method can also be used to seek multiple
sources. Griinwald [47] adopt the minimum description length
(MDL) cost function. This is used to evaluate the ‘goodness’
of a node being in the source set. To search the next source
node, they first remove the previous source nodes from the
infected set. Then, they replay the process of searching the
single source in the remaining infection graph. These two steps
are iterated until the MDL cost function stops decreasing.

Discussion: Due to the high complexity in computing matrix
eigenvalues, generally O(N?), the DML method is not suitable
for identifying sources in large-scale networks. Moreover, the
number of true sources is unknown. Further to this, the gap
between the upper bound and the real value of the probabil-
ity has not been analyzed, and therefore, the accuracy of this
method is not guaranteed.

5) Dynamic Age: Fioriti et al. [17] introduced the dynamic
age method for source identification in generic networks. The
assumption for this method is the same as the DML method.

Method: Fioriti et al. [17] took advantage of the correlation
between the eigenvalue and the ‘age’ of a node. The ‘oldest’
nodes which are associated to those with largest eigenval-
ues will be considered as the sources of a propagation [48].
Meanwhile, they utilized the dynamical importance of node
in [49]. It essentially calculates the reduction of the largest
eigenvalue of the adjacency matrix after a node has been
removed. A large reduction after removal of a node implies the
node is relevant to the ‘aging’ of a propagation. By combing
these two techniques, Fioriti ef al. [17] proposed the concept
of dynamical age for an arbitrary node i as follows,

DA; = |Am — M| /2o, )

where 1, is the maximum eigenvalue of the adjacency matrix,
and Afn is the maximum eigenvalue of the adjacency matrix
after node i is removed. The nodes with the highest dynamic
age are considered as the sources.

Analysis: This method is essentially different from the
previous MDL method. The DML method is to find the
smallest eigenvalues and the corresponding eigenvectors of
Laplacian matrices, while the dynamic age method is to find
the largest eigenvalues of the adjacency matrix.
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Fig. 4.

Discussion: Similar to the MDL method, the dynamic age
method is not suitable for identifying sources in large-scale
networks. Moreover, since there is no threshold to determine
the oldest nodes, the number of source nodes is uncertain.

B. Source Identification Methods With Snapshot

In the real world, a complete observation of an entire net-
work is hardly possible, especially for large-scale networks.
Snapshot is an observation close to reality. It only pro-
vides partial knowledge of propagation in networks. There are
three techniques of source identification developed on snap-
shot: Jordan center, message passing and concentricity based
methods.

1) Jordan Center: Zhu and Ying [51] proposed a novel
Jordan center method for source identification. They assume
information propagates in tree-like networks and the propa-
gation follows the SIR diffusion model. All infected nodes
are known, but we cannot distinguish between susceptible
nodes and recovered nodes. This method is proposed for single
source propagation.

Method: Zhu and Ying [51] proposed a sample path based
approach to identify the propagation source. An optimal sam-
ple path is the one which most likely leads to the observed
snapshot of a network. The source associated with the optimal
sample path is proven to be the Jordan center of the infection
graph. Jordan center is considered as a propagation origin.

Analysis: Zhu and Ying [23] further extended the sam-
ple path based approach to the heterogeneous SIR model.
Heterogeneous SIR model means the infection probabilities
between any two neighboring nodes are different, and the
recovery probabilities of infected nodes differ from each other.
They prove that on infinite trees, the source node associ-
ated with the optimal sample path is also the Jordan center.
Moreover, Luo et al. [15], [52] investigated the sample path
based approach in SI and SIS models. They obtain the same
conclusion as in the SIR model.

Discussion: Similar to rumor center based methods, the
Jordan center method is considered on infinite tree-like net-
works, which are far different from real-world networks.

2) Dynamic Message Passing: In the dynamic message-
passing (DMP) method [53], researchers suppose that propaga-
tion follows SIR model in generic networks. Only propagation
time ¢ and the states of a set of nodes at time ¢ are known.

llustration of wavefronts in the shortest path tree W,. Readers can refer to the work [S0] for the details of the wavefronts.

Method: The DMP method is based on the dynamic equa-
tions in [54]. Assuming an arbitrary node as the source node,
it first estimates the probabilities of other nodes to be in differ-
ent states at time ¢. Then, it multiplies the probabilities of the
observed set of nodes being in the observed states. The source
node which can obtain the maximum product is considered the
propagation origin.

Analysis: The DMP method takes into account the spread-
ing dynamics of the propagation process. This is very different
from the previous centrality based methods. Lokhov et al. [53]
claim the DMP source identification method dramatically
outperforms the previous centrality based methods.

Discussion: An important prerequisite of the DMP method
is that we must know the propagation time f. However, the
propagation time ¢ is generally unknown. Besides, the compu-
tational complexity of this method is O(tN’d), where N is the
number of nodes in a network and d is the average degree of
the network. If the underlying network is strongly connected,
it will be computationally expensive to use the DMP method
to identify the propagation source.

3) Effective  Distance  Based  Method:  Assuming
propagation follows SI model in weighted networks,
Brockmann and Helbing [50] proposed an effective distance
based method for source identification. This method is
considered in another case of snapshot where we only know
a spreading wavefront.

Method: Brockmann and Helbing [50] first proposed a new
concept, the effective distance, to represent the propagation
process. The effective distance from node n to neighboring
node m, d,,;;,, is defined as

dpn = 1 —1ogPyp, 2)

where P, is the fraction of a propagation with destination m
emanating from n. From the perspective of a chosen source
node v, the set of shortest paths in terms of effective distance
to all other nodes constitutes a shortest path tree W,. They
empirically obtain that the propagation process initiated from
node v on the original network can be represented as wave-
fronts on the shortest path tree W,. To illustrate this process, a
simple example is shown in Fig. 4 (refers to [50]). According
to the propagation process of wavefronts, the spreading con-
centricity can only be observed from the perspective of the
true source. Then, the node, which has the minimum standard
deviation and mean of effective distances to the nodes in the
observed wavefront, is considered as the source node.
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Analysis: The information propagation process in networks
is complex and network-driven. The combined multiscale
nature and intrinsic heterogeneity of real-world networks make
it difficult to develop an intuitive understanding of these pro-
cesses. Brockmann and Helbing [50], [55] reduce the complex
spatiotemporal patterns to a simple wavefront propagation
process by using effective distance.

Discussion: To use the effective distance based method for
source identification, we need to compute the shortest dis-
tances from any suspicious source to the observed infected
nodes. This leads to high computational complexity, especially
for large-scale networks.

C. Source Identification Methods With
Sensor Observations

In the real world, a further strategy is used to identify propa-
gation sources by injecting sensors into networks. The sensors
report the direction in which information arrives to them,
and the time at which the information arrives at the sensor.
According to Fig. 3, there are two techniques developed in
this category: statistics and greedy rules.

1) Gaussian Source Estimator: Assuming propagation fol-
lows SI model in tree-like networks, Pinto et al. [21] proposed
a Gaussian method for single source identification. They also
assume there is a deterministic propagation time for each
edge, which are independent and identically distributed with
Gaussian distribution.

Method: This method is divided into two steps. In the first
step, they reduce the scale of seeking origins. According to
the direction in which information arrived at the sensors, it
uniquely determines a subtree T,,. The subtree 7, is guaranteed
to contain the propagation origin [21]. In the second step, they
use the following Gaussian technique to seek the source in 7.
On the one hand, given a sensor node oj, they calculate the
‘observed delay’ between o1 and the other sensors. On the
other hand, assuming an arbitrary node s € T, as the source,
they calculate the ‘deterministic delay’ for every sensor node
relative to o; by using the deterministic propagation time of
the edges. The node, which can minimize the distance between
the ‘observed delays’ and the ‘deterministic delays’ of sensor
nodes, is considered as the propagation origin.

Analysis: This method is considered on tree-like networks.
For generic networks, Pinto et al. [21] assume that informa-
tion spreads along a BFS tree, and then the origin is sought in
the BFS trees. This method is improved by combining commu-
nity recognition techniques in order to reducing the number of
deployed sensors in networks. By choosing the nodes between
communities and with high betweenness values for sensors,
Louni and Subbalakshmi [56] reduce 3% fewer sensors than
the original method [21].

Discussion: For generic networks, the Gaussian estimator is
of complexity O(N3). It is too computationally expensive to
use this method for large-scale networks.

2) Monte Carlo Source Estimator: Agaskar and Lu [20]
proposed a fast Monte Carlo method for source identification
in generic networks. They assume propagation follows the
heterogeneous SI model in which the infection probabilities

between any two neighboring nodes are different. In addition,
the observation of sensors is obtained in a fixed time window.

Method: This method consists of two steps. In the first step,
assuming an arbitrary node as the source, they introduce an
alternate representation for the infection process initiated from
the source. The alternate representation is derived in terms
of the infection time of each edge. Based on the alternate
representation, they sample the infection time for each sensor.
In the second step, they compute the gap between the observed
infection time and the sampled infection time of sensors. They
further use the Monte Carlo approach to approximate the gap.
The node which can minimize the gap is considered as the
propagation origin.

Analysis: The computational complexity of this method is
O(LNlog(N)/¢e), where L is the number of sensor nodes, and
e is the assumed error. The complexity is less than other
source identification methods, which are normally O(Nz), or
even O(N?).

Discussion: When sampling infection time for each edge,
Agaskar and Lu [20] assume that information always spreads
along the shortest paths to other nodes. However, in the real
world, information generally reaches other nodes by random
walk. Therefore, this method may not be suitable for other
propagation schemes, such as random spreading or multicast
spreading.

3) Bayesian Source Estimator: Distinguished from the
DMP method which adopts the message-passing propagation
model (see Section III-B2), Altarelli ef al. [57] proposed using
the Bayesian belief propagation model to compute the proba-
bilities of each node being in any state [58]. This method can
work with different observations and in different propagation
scenarios, however guaranteed accuracy is only obtained in
tree-like networks.

Method: The propagation of risks are first presented by SI,
SIR or other isomorphic models [2], [S9]. Second, given an
observation on the infection of a network, either through a
group of sensors or a snapshot at an unknown time, the belief
propagation equations are derived for the posterior distribu-
tion of past states on all network nodes. By constructing a
factor graph based on the original network, these equations
provide the exact computation of posterior marginal in the
models. Third, belief propagation equations are iterated with
time until they converge. Nodes are then ranked according to
the posterior probability of being the source.

Analysis: This method provides the exact identification of
source in tree-like networks. This method is also effective for
synthetic and real networks with cycles, both in a static and
a dynamic context, and for more general networks, such as
DTN [60]. This method relies on belief propagation model in
order to be used with different observations and in various
scenarios.

Discussion: The accuracy of this method can not be guaran-
teed other than in tree-like networks. Particularly for dynami-
cally evolving networks [61], the average success rate is only
0.53 £ 0.06 and the average error reaches 0.76 £ 0.23.

4) Moon-Walk Source Estimator: Xie et al. [7] proposed a
post-mortem technique on traffic logs to seek the origin of a
worm (a kind of computer virus). There are four assumptions
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for this technique. First, it focuses on the scanning worm [62].
This kind of worm spreads on the Internet by making use of
OS vulnerabilities. Victims will proceed to scan the whole IP
space for vulnerable hosts. Famous examples of this kind of
worm includes Code Red [63] and Slammer [64]. Second, logs
of infection from sensors cover the majority of the propaga-
tion processes. Third, the worm propagation forms a tree-like
structure from its origin. Last, the attack flows of a worm do
not use spoofed source IP addresses.

Method: Based on traffic logs, the network communica-
tion between end-hosts are modeled by a directed host contact
graph. Propagation paths are then created by sampling edges
from the graph according to the time of corresponding logs.
The creation of each path stops when there is no contiguous
edge within At seconds to continue the path. As the sam-
pling is performed, a count is kept of how many times each
edge from the contact graph is traversed. If the worm prop-
agation follows a tree-like structure, the edge with maximum
count will most likely be the top of the tree. The start of this
directed edge will be considered as the propagation source.

Analysis: There are several issues on this technique that
need to be further analyzed. First, it is reasonable to assume
worm do not use the IP spoof technique. In the real world,
the overwhelming majority of worm traffic involved in prop-
agation is initiated by victims instead of the original attacker.
Spoofed IP addresses would only decrease the number of suc-
cessful attacks without providing further anonymity to the
attacker. Second, IP trace back techniques [6] are related
to Moonwalk and other methods discussed in this article.
However, trace back on its own is not sufficient to track worms
to their origin, as trace back only determines the true source
of the IP packets received by a destination. In an epidemic
attack, the source of these packets is almost never the origin
of the attack, but just one of the many infected victims. The
methods introduced in this article are still needed to find the
hosts higher up in the propagation casual trees. Third, this
method relies only on traffic logs. This feature benefits itself
on its ability to work without any a priori knowledge about
the worm attack.

Discussion: Nowadays, the number of scanning worms
has largely decreased due to advances in OS development
and security techniques [65], [66]. Therefore, the usage of
Moonwalk, which can only seek the propagation origin of the
scanning worm, is largely limited. Moreover, a full collec-
tion of infection logs is hardly achieved in the real world.
Finally, current computer viruses are normally distributed by
Botnet [67]. Moonwalk, which can only seek single origin,
may not be helpful in this scenario.

5) Four-Metric Source Estimator: Seo et al. [22] proposed
a four-metric source estimator to identify single source node
in directed networks. They assume propagation follows SI
model. The sensor nodes who transited from susceptible states
to infected states are regarded as positive sensors. Otherwise,
they are considered as negative sensors.

Method: Seo et al. [22] use the intuition that the source
node must be close to the positive sensor nodes, but far away
from the negative sensor nodes. They proposed four metrics
to locate the source. First, they find out a set of nodes which

(B) Small-world network

(A) 3-regular tree

Fig. 5. Sample topologies of two synthetic networks. (A) 3-regular tree;
(B) small-world network.

are reachable to all positive sensors. Second, they filter the
set of nodes by choosing the ones with the minimum sum
of distances to all positive sensor nodes. Third, they further
choose the nodes that are reachable to the minimum number of
negative sensor nodes. Finally, the node which satisfies all of
the above three metrics and has the maximum sum of distances
to all negative sensor nodes is considered as the source node.

Analysis: Seo et al. [22] studied and compared different
methods of choosing sensors, such as randomly choosing
(Random), choosing the nodes with high betweenness cen-
trality values (BC), choosing the nodes with a large number
of incoming edges (NI), and choosing the nodes which are
at least d hops away from each other (Dist). Different sensor
selection methods produce different sets of sensor nodes, and
have different accuracies in source identification. They show
that the NI and BC sensor selection methods outperform the
others.

Discussion: For the four-metric source estimator, it needs to
compute the shortest paths from the sensors to any potential
source. Generally, the computational complexity is O(N?). It
is too computationally expensive to use this method.

IV. COMPARATIVE STUDY

In order to have a numerical understanding of the meth-
ods of source identification, we examine the methods under
different experiment environments. Furthermore, we analyze
potential impact factors on the accuracy of source identifica-
tion. We test the methods on both synthetic and real-world
networks. All the experiments were conducted on a desktop
computer running Microsoft Windows7 with 2 CPUs and 4G
memory. The implementation was done in Matlab2012.

For each category of observation, we examined one or two
typical source identification methods. In total, five methods
were examined. For complete observation, we tested the rumor
center method and the dynamic-age method. We also tested the
Jordan center method and the DMP method for snapshots of
networks. The Gaussian source estimator was examined for
sensor observation. In the experiments, we typically choose
infection probability (g) to be 0.75 and recovery probability
(p) to be 0.5. We randomly choose a node as a source to initiate
a propagation, and then average the error distance 6 between
the estimated sources and the true sources by 100 runs.
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A. Tests on Synthetic Networks

In this subsection, we first compare the performance of dif-
ferent source identification methods on synthetic networks.
Then, we study three potential impact factors on the accuracies
of the methods.

1) Crosswise Comparison: We conducted experiments on
two synthetic networks: a regular tree [35] and a small-
world network [68]. Fig. 5(A) and Fig. 5(B) show example
topologies of a 3-regular tree and a small-world network.

Fig. 6 shows the frequency of error distances § of differ-
ent methods on a 4-regular tree. We can see that, the sources
estimated by the DMP method and the Jordan center method
are the closest to the true sources, with an average of 1.5-2
hops away. The rumor center method and the Gaussian method
estimate the sources with an average of 2-3 hops away from
the true sources. The sources estimated using the dynamic age
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method were the farthest away from the true sources. Fig. 7
shows the performances of different methods on a small-world
network. It is clear the Jordan center method outperforms the
others, with estimated sources around 1 hop away from the true
sources. The DMP method also exposes good performances by
showing estimated sources are an average of 1-2 hops away
from the true sources. The dynamic age method and Gaussian
method have the worst performance.

Numerical Results: From the experiment results on the reg-
ular tree and small-world network, we can see that the DMP
method and the Jordan center method have better performance
than the other methods.

2) The Impact of Network Topologies: In Section III, we
know that some existing methods of source identification are
considered on tree-like networks. In the previous subsection,
we have shown the results of methods implemented on regular
trees and small-world networks. In order to analyze the impact
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(A) Random walk

Fig. 10.
infected. (A) Random walk; (B) Contact process; (C) Snowball.

of network topology on the methods, we introduce another
two different network topologies: random trees and regular
graphs: We further conduct performance evaluation on these
two topologies.

Fig. 8 shows the experiment results of methods on a ran-
dom tree. It is clear the Jordan center method has the best
performance, with estimated sources around 2 hops away from
the true sources. The rumor center method and the dynamic
age method show similar performance, with estimated sources
around 3 hops away from the true sources. The DMP method
and the Gaussian method have the worst performance. Fig. 9
shows the experiment results of methods on a regular graph.
It shows that sources estimated by using the Jordan center
method and the DMP method were the closest to the true
sources. The sources estimated by the rumor center method
were the farthest from true sources. The dynamic age method
and the Gaussian method also show poor performance in this
scenario.

Numerical Results: From the experiment results on the
four different network topologies, we can see the source
identification methods are sensitive to network topology.

3) The Impact of Propagation Schemes: From Section III,
we know that some existing methods of source identification
are based on the assumption that information propagates along
the BFS trees in networks. This means propagation follows
the broadcast scheme. However, in the real world, propagation
may follow various propagation schemes. We focus on three
most common propagation schemes: snowball, random walk
and contact process [69]. Their definitions are given below.

o Random Walk: A node can deliver a message randomly

to one of its neighbors.

o Contact Process: A node can deliver a message to a group
of its neighbors that have expressed interest in receiving
the message.

o Snowball Spreading: A node can deliver a message to all
of its neighbors.

An illustration of these three propagation schemes is shown in
Fig. 10. We examine different propagation schemes on both
regular trees and small-world networks.

Fig. 11 shows the experiment results of the methods with
propagation following the random-walk propagation scheme
on a 4-regular tree. It is clear the Gaussian source estimator

(B) Contact process

(C) Snowhball

Tllustration of different propagation schemes. The black node stands for the source. The numbers indicate the hierarchical sequence of nodes getting

-

! !
Rumor center

Frequency
o
(3]

o

0 1 2 3 4 5 6 7 8 9 10 1" 12

N

Dynamic age |

Frequency
o
(6]

L

-

Frequency
o
o [$)]

N

Frequency
o
(3]
L

f

-

Frequency
o
(3]

OF

o
N
N
w
I

5 6 7 8 9 10 11 12
Error distance

Fig. 11.  Source identification methods applied on a 4-regular tree with
propagation following the random-walk scheme.

outperforms the others, with estimated sources around 1-2
hops away from the true sources. The performances of the
rumor center method, the dynamic age method and the Jordan
center method are similar to each other, with estimated sources
around 5 hops away from the true sources. The DMP method
has the worst performance. Fig. 12 shows experiment results
of the methods with propagation following the contact-process
propagation scheme on a 4-regular tree. It is clear the results
in Fig. 11 and Fig. 12 are similar to each other. This means the
methods have similar performances on both the random-walk
and contact-process propagation schemes. Fig. 13 shows the
experiment results of the methods with propagation follow-
ing the snowball propagation scheme on a 4-regular tree. The
results show a big difference from the results of the previous
two propagation schemes. The DMP method and the Jordan
center method outperformed the others, with estimated sources
around 1-2 hops away from the true sources. The rumor center
method and the Gaussian method also showed good perfor-
mances, with estimated sources around 2-3 hops away from
the true sources. The dynamic age method had the worst
performance.
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Fig. 12.  Source identification methods applied on a 4-regular tree with
propagation following the contact-process scheme.
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Fig. 13.  Source identification methods applied on a 4-regular tree with
propagation following the snowball scheme.

The experiment results of the methods with propagation
following different propagation schemes on a small-world
network are shown in Fig. 14, 15 and 16. The results are
dramatically different from the results on regular trees. From
Fig. 14 we can see the Gaussian source estimator obtains the
best performance, followed by the DMP method. The rumor
center method, the dynamic age method and the Jordan center
method show identifying sources by randomly choosing. From
Fig. 15, it is clear the Jordan center method, the DMP method
and the Gaussian method show similar performances. These
three methods outperform the others. From Fig. 16 we can see
the Jordan center method outperforms the others, with esti-
mated sources around 1 hop away from the true sources. The
sources estimated using the DMP method are around 1-2 hops
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with propagation following the random-walk scheme.
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Fig. 15. Source identification methods applied on a small-world network
with propagation following the contact-process scheme.

away from the true sources. The Gaussian source estimator has
the worst performance.

Numerical Results: From the experiment results, we see the
source identification methods are also sensitive to propaga-
tion schemes. The methods of source identification show better
performance when propagation follows the snowball propaga-
tion scheme rather than the random-walk or contact-process
propagation schemes.

4) The Impact of Infection Probabilities: In this subsection,
we will analyze the impact of infection probability on the accu-
racy of source identification. We set the infection probability
from 0.5 to 0.95.

The experiment results are shown in Fig. 17 and Fig. 18.
From these figures, we can see that the rumor center method
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Fig. 16. Source identification methods applied on a small-world network
with propagation following the snowball scheme.
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Fig. 17. Source identification methods applied on a small-world network
with infection probability ¢ = 0.5.

have similar performances when we change the infection prob-
ability. The same phenomenon happens on the dynamic age
method, the Jordan center method and the Gaussian methods.
The DMP method performs best when infection probability
q 1is equal to 0.5. The accuracy declines when ¢ increases to
0.95. Among the experiment results, the Jordan center method
and the DMP method outperform the other methods, with esti-
mated sources around 1 hop away from the true sources. The
dynamic age method and the Gaussian method have the worst
performance.

Numerical Results: From the experiment results, we can
see only the DMP method is sensitive to the infection proba-
bility and performs better when the infection probability is
lower. The other methods show slightly difference in their
performance when applied with various infection probabilities.
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Fig. 18.  Source identification methods applied on a small-world network
with infection probability ¢ = 0.95.

(B) Power grid network

(A) Eron email network

Fig. 19. Sample topologies of two real-world networks: (A) Enron email
network; (B) Power grid network.

B. Tests on Real-World Networks

In this subsection, we examine the methods of source identi-
fication on two real-world networks. The first one is an Enron
email network [70]. This network has 143 nodes and 1,246
edges. On average, each node has 8.71 edges. Therefore, the
Enron email network is a dense network. The second is a
power grid network [71]. This network has 4,941 nodes and
6,594 edges. On average, each node has 1.33 edges. Therefore,
the power grid network is a sparse network. Sample topologies
of these two real-world networks are shown in Fig. 19.

Fig. 20 shows the frequency of error distance § of different
methods on the Enron email network. We can see the rumor
center method, the Jordan center method and the dynamic age
method outperform the others. The DMP method has the worst
performance. The Enron email network is a small and dense
network, complete observation of this network is reasonable
and executable, and the identification accuracy is also accept-
able. Fig. 21 shows the experiment results on the power grid
network. It is clear the Jordan center method and the DMP
method outperform the others, with estimated sources around
1-2 hops away from the true sources. The rumor center method
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Fig. 20. Source identification methods applied on an Enron email network.
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Fig. 21. Source identification methods in a power grid network.

and the Gaussian method show similar performance, with esti-
mated sources around 2-4 hops away from the true sources.
The dynamic age method has the worst performance.
Numerical Results: From the experiment results, we can see
the accuracies of the methods are greatly different between
these two real-world networks. For the Enron email network,
the rumor center method and the dynamic age method outper-
form the other methods, while the DMP method has the worst
performance. However, for the power grid network, the DMP
method and the Jordan center have the best performance

V. SUMMARY AND OPEN ISSUES
A. What We Learn from the-State-of-the-Art?

We summarize the source identification methods in this sub-
section. Based on the content in Section III, it is clear that

current methods rely on either the topological centrality mea-
sures or the measures of the distance between the observations
and mathematical estimations of the propagation.

In Table I, we collect seven features from the methods dis-
cussed in this article. A detailed summary on each feature is
elaborated as follows:

1. Topology: As shown in Table I, a significant part the
focus for current methods is tree-like topology. These meth-
ods can deal with generic network topologies by using the
BFS technique to reconstruct generic networks into trees.
According to comparative studies in Section IV, methods on
different topologies show a great variety of accuracy in seeking
origins.

2. Observation: Based on the analysis in Section III, the
category of observation is not a deterministic factor on the
accuracy of source identification. The accuracy of each method
varies according to the different conditions and scenarios. In
the real world, complete observation is generally difficult to
achieve. Snapshot and sensor observation are normally more
realistic.

3. Model: The majority of methods employ SI model to
present the propagation dynamics of risks. The SI model
only considers the susceptible and infected states of nodes
regardless of the recovery process. The extension to SIR/SIS
will increase the complexity of source identification methods.
Jordan center and Monte Carlo method is based on SIR/SIS
model. In particular, the Bayesian source estimator can be used
in scenarios with various propagation models as the belief
propagation approach can estimate the probabilities of node
states under various conditions.

4. Source: Most methods focus on single source iden-
tification. The multi-rumor center method and eigenvector
center method can be used to identify multiple sources.
However, these two methods are too computationally expen-
sive to be implemented. In the real world, risks are
normally distributed from multiple sources. For example,
attackers generally employ a botnet which contains thou-
sands of victims to help spread the computer virus [72], [73].
For source identification, these victims are the propagation
origins.

5. Probability: For simplicity, earlier methods consider the
infection probabilities to be identical among the edges in net-
works. Later, most methods are extended to varied infection
probabilities among different edges. Noticeably, this extension
makes source identification methods more realistic.

6. Time Delay: Only the methods under sensor observa-
tions consider time delay for edges. Accurate time delay of
risks is an important factor in the propagation [74], [75]. It is
important to consider the time delay in source identification
techniques.

7. Complexity: Most current methods are too computation-
ally expensive to quickly capture the sources of propagation.
The complexity ranges from O(NlogN/e) to O(N¥). In fact,
the complexity of methods dominates the speed of seeking ori-
gins. Quickly identifying propagation sources in most cases
is of great significance in the real world, such as capturing
the culprits of rumors. Future work is needed to improve the
identification speed.
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TABLE I
SUMMARY OF CURRENT SOURCE IDENTIFICATION METHODS
Topology | Observation | Model | Number of Sources | Infection Probability | Time Delay Complexity
Single rumor center Tree Complete SI Single HM/HT Constant O(N?)
Local rumor center Tree Complete SI Single HM Constant O(N?)
Multi rumor centers Tree Complete SI Multiple HM Constant O(NF)
Eigenvector center Generic Complete SI Multiple HM Constant O(N?)
Jordan center Tree Snapshot SI(R/S) Single HM/HT Constant O(N?)
DMP Generic Snapshot SIR Single HT Constant O(toNZd)
Effective distance Generic Snapshot SI Single HT Constant O(N?)
Gaussian Tree Sensor SI Single HT Variable O(N?)
Monte Carlo Generic Sensor SIR Single HT Variable O(NlogN/e?)
Four-metrics Generic Sensor SI Single HT Variable O(N?)
Infection Probability: HM represents homogeneous; HT represents heterogeneous.
TABLE II
SUMMARY OF COMPARATIVE STUDIES
Error distance §
Rumor Center Dynamic Age Jordan Center DMP Gaussian
1~2 3~ 4 > 4 I ~2 3~ 4 > 4 1~2 3~ 4 > 4 I ~2 3~ 4 > 4 1~2 3~ 4 >4
Regular tree V4 Vv vV N v
Random tree 4 v V4 V4 Vv
Regular Graph 4 4 v v v
Topology Small World Vv Vv Vv v v
Enron Email v Va4 4 V4 4
Power Grid Vv Vi Vv vV Vv
Random Walk N VA N VA VA
Scheme Contact Process Vv VA Vv Vv Na
Snowball Vv 4 4 v 4
o v Y vy v Y
Infecti q = 0.65
probabily | 1= 075 v vy v v
q=0.95 v v v v v

B. What We Learn from Comparative Studies?

A summary of the comparative studies in Section IV is
shown in Table II. For the rumor center method, it is clear
that the error distance § is normally from 3 to 4. The per-
formance worsens when this method runs with the settings:
regular graph, random-walk propagation scheme, contact-
process propagation scheme or infection probability g = 0.5.
Specifically, the performance of the dynamic age method is
much worse than that of the rumor center method, as the
error distance § is normally larger than 4. The Jordan cen-
ter method and the DMP method normally outperform other
methods in many settings, with error distance 6 between 1
and 3. The Gaussian method only runs well when propaga-
tion follows random-walk scheme or contact-process scheme
on regular trees.

From the comparative studies, we can see that current meth-
ods are far from practice as their accuracy in terms of error
distance § is normally larger than three in most scenarios.
Although the sources estimated by the Jordan center method
and the DMP method are close to the true sources under some
settings, their performances are unstable and cannot meet our
expectation with § > 4 under other settings in Table II.

C. Open Issues

Based on the summary of the-state-of-the-art and compara-
tive studies in source identification, we extract five open issues.
The solutions to these open issues will help provide more
realistic results.

1) Tree-Like Topology or Generic Topology: It is normal
to have cycles in real-world networks [76]-[79]. It is essential

to consider the propagation impact of topological cycles on
source identification. Although current methods based on trees
can identify sources on generic networks by using the BFS
technique, its accuracy cannot be guaranteed as the impact of
cycles are neglected in BFS trees. This is an inevitable draw-
back for tree-based methods working on generic networks.
Therefore, we cannot directly use or extend tree-based meth-
ods for source identification on generic networks. On another
hand, current methods which are considered on generic net-
works are quite sensitive to the topologies of networks (see
details in Section IV-A2). We cannot obtain a guaranteed accu-
racy when the topology changes. We therefore propose an open
issue of an accurate, steady and practical source identification
method in generic networks.

2) Single Source or Multiple Sources: In the real world,
the propagation of risks are often initiated from multiple
sources. For example, culprits employ a botnet to spread
rumors and computer viruses [9], [72], [73], [80]. However,
few current methods are designed for multi-source identifica-
tion. Technically, the methods of single source identification
cannot be directly used for multiple source identification.
This is because the spread initiated from multiple sources
cannot be thought of as the superposition of multiple single-
type propagation processes. Moreover, current multi-source
identification methods are too computationally expensive to
obtain results. The complexity is normally O(N3) [17], [46].
Especially for the work [12], when the number of sources
(k) increases, the complexity becomes O(Nk), which is too
computational complex. Therefore, we propose an efficient
method for multi-source identification as the second open
issue.
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3) Single Network or Interconnected Networks: The distri-
bution of information is a complex process in the real world.
It may involve multiple interconnected networks to spread
information. For example, people may hear rumors from
online social networks, such as Facebook or Twitter. They
can also receive rumors from multimedia. Therefore, identify-
ing sources in interconnected networks is much more realistic
than methods considered in a single network. However, all
current methods in source identification are based on a sin-
gle network. Therefore, we propose the fourth open issue of
identifying sources in interconnected networks.

4) Temporal Dynamics: In the real world, it takes dif-
ferent periods of time for nodes to transmit information to
their neighbors. The temporal dynamic is an important factor,
particularly when the propagation concerns human involve-
ments [76], [81]. Technically, the temporal dynamic is also a
complex factor. It involves the impact of the time zone and
the population distribution [74]. Individual habits also strongly
affect the temporal dynamic of propagation. Currently, a few
methods take temporal dynamics into account [20], [21].
However, the temporal dynamics in these methods are far from
practice. We therefore propose considering realistic temporal
dynamics in source identification as the third open issue.

5) Complexity and Scalability: Identifying culprits as
quickly as possible is of great significance in practice [82].
However, as we have studied in this article, current methods
are too computationally expensive to quickly obtain results.
Moreover, the real propagation of risks occur in large-scale
networks. The complexity becomes even worse when networks
have a large population of nodes. As far as we know, none of
the current methods has been used in large-scale real networks.
Therefore, we propose developing efficient and scalable source
identification methods as the final open issue.

VI. CONCLUSION

In this article, we review state-of-the-art in source identi-
fication techniques. We first categorized current source iden-
tification techniques into three classes and analyze the pros
and cons of each method. We further explored comparative
studies on typical methods in order to provide a numerical
understanding of current methods. We find current methods
have a great variety of accuracy when the experiment envi-
ronment changes. Open issues are finally proposed based on
the analysis and comparison of the previous two parts. We
believe this survey is timely and worthwhile.

Our future work contains two parts. First, we will focus
on novel methods that can identify multiple sources of prop-
agation. The potential solution could be based on inverse
techniques in mathematics. Second, the methods of source
identification on interconnected networks are in development.
These methods are more practical than current methods.

REFERENCES

[1] B. Doerr, M. Fouz, and T. Friedrich, “Why rumors spread so quickly in
social networks,” Commun. ACM, vol. 55, no. 6, pp. 7075, Jun. 2012.

[2] Y. Wang, S. Wen, Y. Xiang, and W. Zhou, “Modeling the propagation of
worms in networks: A survey,” IEEE Commun. Surveys Tuts., vol. 16,
no. 2, pp. 942-960, 2nd Quart., 2013.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

479

Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid com-
munication infrastructures: Motivations, requirements and challenges,”
IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 5-20, 1st Quart., 2013.
R. Richardson and C. Director, CSI Computer Crime and Security
Survey, vol. 1. San Francisco, CA, USA: Comput. Security Inst., 2008,
pp. 1-30.

S. Savage, D. Wetherall, A. Karlin, and T. E. Anderson, “Practical net-
work support for IP traceback,” ACM SIGCOMM Comput. Commun.
Rev., vol. 30, no. 4, pp. 295-306, 2000.

V. Sekar, Y. Xie, D. A. Maltz, M. K. Reiter, and H. Zhang, “Toward
a framework for Internet forensic analysis,” in Proc. ACM HotNets-I11,
San Diego, CA, USA, 2004.

Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm
origin identification using random moonwalks,” in Proc. IEEE Symp.
Security Privacy, Oakland, CA, USA, 2005, pp. 242-256.

T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors
in social networks,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Min., Washington, DC, USA, 2010, pp. 1059-1068.

Z. Chen, K. Zhu, and L. Ying, “Detecting multiple information sources
in networks under the SIR model,” in Proc. 48th Annu. Conf. Inf. Sci.
Syst. (CISS), Princeton, NJ, USA, 2014, pp. 1-4.

D. Shah and T. Zaman, “Rumor centrality: A universal source detec-
tor,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 199-210,
Jun. 2012.

N. Karamchandani and M. Franceschetti, “Rumor source detection under
probabilistic sampling,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Istanbul, Turkey, 2013, pp. 2184-2188.

W. Luo, W. P. Tay, and M. Leng, “Identifying infection sources and
regions in large networks,” IEEE Trans. Signal Process., vol. 61, no. 11,
pp- 2850-2865, Jun. 2013.

D. T. Nguyen, N. P. Nguyen, and M. T. Thai, “Sources of misinforma-
tion in online social networks: Who to suspect?” in Proc. IEEE Milit.
Commun. Conf. (MILCOM), Orlando, FL, USA, 2012, pp. 1-6.

K. Zhu and L. Ying, “Information source detection in the sir model: A
sample-path-based approach,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 408-421, Feb. 2016.

W. Luo, W. P. Tay, and M. Leng, “How to identify an infection source
with limited observations,” IEEE J. Sel. Topics Signal Process., vol. 8,
no. 4, pp. 586-597, Aug. 2014.

W. Luo and W. P. Tay, “Identifying infection sources in large tree net-
works,” in Proc. 9th Annu. IEEE Commun. Soc. Conf. Sensor Mesh Ad
Hoc Commun. Netw. (SECON), Seoul, South Korea, 2012, pp. 281-289.
V. Fioriti, M. Chinnici, and J. Palomo, “Predicting the sources of an
outbreak with a spectral technique,” Appl. Math. Sci., vol. 8, no. 135,
pp. 6775-6782, 2014.

B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits in epi-
demics: How many and which ones?” in Proc. IEEE 12th Int. Conf.
Data Min. (ICDM), Brussels, Belgium, 2012, pp. 11-20.

W. Luo and W.-P. Tay, “Identifying multiple infection sources in
a network,” in Proc. Conf. Rec. 46th Asilomar Conf. Signals Syst.
Comput. (ASILOMAR), Pacific Grove, CA, USA, 2012, pp. 1483-1489.
A. Agaskar and Y. M. Lu, “A fast Monte Carlo algorithm for source
localization on graphs,” in Proc. SPIE Opt. Eng. Appl., San Diego, CA,
USA, 2013, Art. no. 88581N.

P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion
in large-scale networks,” Phys. Rev. Lett., vol. 109, no. 6, Aug. 2012,
Art. no. 068702.

E. Seo, P. Mohapatra, and T. Abdelzaher, “Identifying rumors and their
sources in social networks,” in Proc. SPIE Defense Security Sens.,
Baltimore, MD, USA, 2012.

K. Zhu and L. Ying, “A robust information source estimator with sparse
observations,” Comput. Soc. Netw., vol. 1, no. 1, p. 1, 2014.

L.-P. Song, Z. Jin, and G.-Q. Sun, “Modeling and analyzing of botnet
interactions,” Phys. A Stat. Mech. Appl., vol. 390, no. 2, pp. 347-358,
2011.

Y. Yao, X. Luo, F. Gao, and S. Ai, “Research of a potential worm
propagation model based on pure P2P principle,” in Proc. Int. Conf.
Commun. Technol. (ICCT), Guilin, China, 2006, pp. 1-4.

H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,
vol. 42, no. 4, pp. 599-653, 2000.

K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS epidemic
model with two delays,” J. Math. Biol., vol. 35, no. 2, pp. 240-260,
1996.

Y. Xiang, X. Fan, and W. T. Zhu, “Propagation of active worms: A
survey,” Int. J. Comput. Syst. Sci. Eng., vol. 24, no. 3, pp. 157-172,
2009.

R. Albert, H. Jeong, and A.-L. Barabdsi, “Error and attack tolerance of
complex networks,” Nature, vol. 406, no. 6794, pp. 378-382, Jul. 2000.
M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the Internet topology,” in Proc. Conf. Appl. Technol. Architect.
Protocols Comput. Commun. (SIGCOMM), Cambridge, MA, USA,
1999, pp. 251-262.



480

[31]

(32]
[33]
[34]
[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 1, FIRST QUARTER 2017

M. E. J. Newman, “Epidemics on networks,” in Networks: An
Introduction. Oxford, U.K.: Oxford Univ. Press, 2010, ch. 17,
pp. 700-750.

L. C. Freeman, “Centrality in social networks conceptual clarification,”
Soc. Netw., vol. 1, no. 3, pp. 215-239, 1978.

P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of
complex networks,” Phys. Rev. E, vol. 65, no. 5, 2002, Art. no. 0561009.
Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabdsi, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167-173, 2011.

D. Shah and T. Zaman, “Detecting sources of computer viruses in net-
works: Theory and experiment,” in Proc. ACM SIGMETRICS Int. Conf.
Measur. Model. Comput. Syst. (SIGMETRICS), New York, NY, USA,
Dec. 2010, pp. 203-214.

P. Hage and F. Harary, “Eccentricity and centrality in networks,” Soc.
Netw., vol. 17, no. 1, pp. 57-63, 1995.

A. H. Dekker, “Centrality in social networks: Theoretical and simula-
tion approaches,” in Proc. SimTecT, Melbourne, VIC, Australia, 2008,
pp. 12-15.

K. Miura, D. Takahashi, S. Nakano, and T. Nishizeki, “A linear-time
algorithm to find four independent spanning trees in four-connected pla-
nar graphs,” in Proc. 24th Workshop Graph Theor. Concepts Comput.
Sci., 1998, pp. 310-323.

P. Bonacich, “Power and centrality: A family of measures,” Amer. J.
Sociol., vol. 92, no. 5, pp. 1170-1182, 1987.

M. E. Newman, “The mathematics of networks,” in The New
Palgrave Encyclopedia of Economics, vol. 2. Basingstoke, U.K.:
Palgrave Macmillan, 2008, pp. 1-12.

D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?” IEEE
Trans. Inf. Theory, vol. 57, no. 8, pp. 5163-5181, Aug. 2011.

Z. Wang, W. Dong, W. Zhang, and C. W. Tan, “Rumor source detec-
tion with multiple observations: Fundamental limits and algorithms,” in
Proc. ACM Int. Conf. Measur. Model. Comput. Syst. (SIGMETRICS),
Austin, TX, USA, 2014, pp. 1-13.

W. Dong, W. Zhang, and C. W. Tan, “Rooting out the rumor culprit
from suspects,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul,
Turkey, 2013, pp. 2671-2675.

S. L. Hakimi, M. L. Labbé, and E. Schmeichel, “The Voronoi partition
of a network and its implications in location theory,” ORSA J. Comput.,
vol. 4, no. 4, pp. 412-417, 1992.

W. Zang, P. Zhang, C. Zhou, and L. Guo, “Discovering multiple dif-
fusion source nodes in social networks,” Proc. Comput. Sci., vol. 29,
pp. 443-452, Dec. 2014.

B. A. Prakash, J. Vreeken, and C. Faloutsos, “Efficiently spotting the
starting points of an epidemic in a large graph,” Knowl. Inf. Syst., vol. 38,
no. 1, pp. 35-59, 2014.

P. D. Grinwald, The Minimum Description Length Principle.
Cambridge, MA, USA: MIT Press, 2007.

G.-M. Zhu et al., “Uncovering evolutionary ages of nodes in complex
networks,” Eur. Phys. J. B, vol. 85, no. 3, pp. 1-6, 2012.

J. G. Restrepo, E. Ott, and B. R. Hunt, “Characterizing the dynamical
importance of network nodes and links,” Phys. Rev. Lett., vol. 97, no. 9,
Sep. 2006, Art. no. 094102.

D. Brockmann and D. Helbing, “The hidden geometry of complex,
network-driven contagion phenomena,” Science, vol. 342, no. 6164,
pp. 1337-1342, 2013.

K. Zhu and L. Ying, “Information source detection in the SIR model: A
sample path based approach,” in Proc. Inf. Theory Appl. Workshop (ITA),
San Diego, CA, USA, 2013, pp. 1-9.

W. Luo and W. P. Tay, “Finding an infection source under the SIS
model,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), Vancouver, BC, Canada, 2013, pp. 2930-2934.

A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborovd, “Inferring the
origin of an epidemic with a dynamic message-passing algorithm,” Phys.
Rev. E, vol. 90, no. 1, 2013, Art. no. 012801.

B. Karrer and M. E. J. Newman, “Message passing approach for
general epidemic models,” Phys. Rev. E, vol. 82, no. 1, Jul. 2010,
Art. no. 016101.

D. Brockmann and D. Helbing, “Supplementary materials for the hidden
geometry of complex, network-driven contagion phenomena,” Science,
vol. 342, no. 6164, pp. 1337-1342, 2013.

A. Louni and K. P. Subbalakshmi, “A two-stage algorithm to estimate the
source of information diffusion in social media networks,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Toronto,
ON, Canada, 2014, pp. 329-333.

F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and
R. Zecchina, “Bayesian inference of epidemics on networks via belief
propagation,” Phys. Rev. Lett., vol. 112, no. 11, 2014, Art. no. 118701.
T. Zhao and A. Nehorai, “Distributed sequential Bayesian estimation
of a diffusive source in wireless sensor networks,” IEEE Trans. Signal
Process., vol. 55, no. 4, pp. 1511-1524, Apr. 2007.

P. Cui ef al., “Cascading outbreak prediction in networks: A data-driven
approach,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., Chicago, 1L, USA, 2013, pp. 901-909.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

(771

[78]

(791

[80]

[81]

[82]

Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based routing
in delay tolerant networks: Positive and negative social effects,” IEEE
Commun. Surveys Tuts., vol. 15, no. 1, pp. 387-401, 1st Quart., 2013.
M. Spiliopoulou, “Evolution in social networks: A survey,” in Social
Network Data Analytics, C. C. Aggarwal, Ed. New York, NY, USA:
Springer, 2011, ch. 6, pp. 149-175.

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy
of computer worms,” in Proc. ACM Workshop Rapid Malcode (WORM),
Washington, DC, USA, 2003, pp. 11-18.

C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in Proc. 9th ACM Conf. Comput. Commun.
Security (CCS), Washington, DC, USA, 2002, pp. 138-147.

D. Moore et al., “Inside the Slammer worm,” IEEE Security Privacy,
vol. 99, no. 4, pp. 33-39, Jul./Aug. 2003.

P. Wood and G. Egan, “Symantec Internet security threat report 2011,”
Symantec Corp., Mountain View, CA, USA, Tech. Rep., Apr. 2012.

S. Aldalahmeh and M. Ghogho, “Robust distributed detection, local-
ization, and estimation of a diffusive target in clustered wireless
sensor networks,” in Proc. ICASSP, Prague, Czech Republic, 2011,
pp. 3012-3015.

Z. Zhu et al., “Botnet research survey,” in Proc. 32nd Annu. IEEE
Int. Comput. Softw. Appl. (COMPSAC), Turku, Finland, Jul. 2008,
pp. 967-972.

D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440—442, 1998.

C. H. Comin and L. da Fontoura Costa, “Identifying the starting point
of a spreading process in complex networks,” Phys. Rev. E, vol. 84,
Nov. 2011, Art. no. 056105.

S. Jitesh and A. Jafar, “The Enron email dataset database schema and
brief statistical report,” Inf. Sci. Inst., Univ. Southern California, Los
Angeles, CA, USA, Tech. Rep. 4, 2009.

Power Grid Network Data Set. Accessed on Feb. 2, 2014. [Online].
Available: http://www- personal.umich.edu/~mejn/netdata/

E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: Quantifying influence on Twitter,” in Proc. 4th ACM Int.
Conf. Web Search Data Min. (WSDM), Hong Kong, 2011, pp. 65-74.
M. Fossi and J. Blackbird, “Symantec Internet security threat report
2010, Symantec Corp., Mountain View, CA, USA, Tech. Rep.,
Mar. 2011.

D. Dagon, C. C. Zou, and W. Lee, “Modeling botnet propagation
using time zones,” in Proc. NDSS, vol. 6. San Diego, CA, USA, 2006,
pp. 2-13.

J. Manitz, J. Harbering, M. Schmidt, T. Kneib, and A. Schobel, “Source
estimation for propagation processes on complex networks with an appli-
cation to delays in public transportation systems,” J. Roy. Stat. Soc. C
(Appl. Stat.), Sep. 2016.

S. Wen et al., “Modeling propagation dynamics of social net-
work worms,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 8,
pp. 1633-1643, Aug. 2013.

N. Antulov-Fantulin, A. Lancic, H. Stefancic, M. Sikic, and T. Smuc,
“Statistical inference framework for source detection of contagion pro-
cesses on arbitrary network structures,” in Proc. IEEE 8th Int. Conf. Self
Adapt. Self Organizing Syst. Workshops (SASOW), London, U.K., 2014,
pp. 78-83.

C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai, “Network
forensics: Random infection vs spreading epidemic,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 1, pp. 223-234, Jun. 2012.

R. Berry and V. G. Subramanian, “Spotting trendsetters: Inference for
network games,” in Proc. 50th Annu. Allerton Conf. Commun. Control
Comput. (Allerton), Monticello, IL, USA, 2012, pp. 1697-1704.

H. T. Nguyen, P. Ghosh, M. L. Mayo, and T. N. Dinh, “Multiple infec-
tion sources identification with provable guarantees,” arXiv:1608.06492,
2016.

M. G. Rodriguez, J. Leskovec, and A. Krause, “Inferring networks of
diffusion and influence,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., Washington, DC, USA, 2010, pp. 1019-1028.

A. Jain, V. Borkar, and D. Garg, “Fast rumor source identification via
random walks,” Soc. Netw. Anal. Min., vol. 6, no. 1, p. 62, 2016.

Jiaojiao Jiang received the master’s degree
from the College of Applied Sciences, Beijing
University of Technology in 2011. She is cur-
rently pursuing the Ph.D. degree with the School
of Information Technology, Deakin University,
Melbourne, Australia. Her research interests include
cyber security, complex networks, big data, and
signal processing.



JIANG et al.: IDENTIFYING PROPAGATION SOURCES IN NETWORKS: STATE-OF-THE-ART AND COMPARATIVE STUDIES 481

Sheng Wen received the graduate degree in com-
puter science and technology from Lanzhou Jiaotong
University, Gansu, China, in 2003, and the Ph.D.
degree in computer science from Deakin University,
Australia. His research interests include modeling
of virus spread, defence strategies of the Internet
threats, and locating the authors of computer viruses.

Shui Yu (M’05-SM’12) is currently a Senior
Lecturer with the School of Information Technology,
Deakin University. His research interest includes
security and privacy in networking, big data, and
cyberspace and mathematical modeling. He has pub-
lished two monographs and edited two books, over
150 technical papers, including top journals and
top conferences, such as the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY, the IEEE TRANSACTIONS ON MOBILE COMPUTING, the
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, and IEEE
INFOCOM. He is a member of Deakin University Academic Board from 2015
to 2016, AAAS, ACM, and the IEEE Big Data Standardization Committee,
and the Vice Chair of the Technical Subcommittee on Big Data Processing,
Analytics, and Networking of IEEE Communication Society.

He initiated the research field of networking for big data in 2013. He has an
H-index of 22. He actively serves his research communities in various roles.
He is currently serving the editorial boards of the IEEE Communications
Surveys and Tutorials, the IEEE ACCESS, the IEEE JOURNAL OF INTERNET
OF THINGS, the IEEE Communications Magazine, and a number of other
international journals. He has served over 70 international conferences as a
member of organizing committee, such as the Publication Chair for IEEE
Globecom 2015 and 2017, IEEE INFOCOM 2016 and 2017, the TPC Co-
Chair for the IEEE BigDataService 2015, IEEE ATNAC 2014, IEEE ITNAC
2015; the Executive General Chair for ACSW2017.

Yang Xiang (A’08-M’09-SM’12) received the
Ph.D. degree in computer science from Deakin
University, Australia, where he is the Director of
Centre for Cyber Security Research. He is cur-
rently leading his team developing active defense
systems against large-scale distributed network
attacks. He has published over 200 research
papers in many international journals and con-
ferences, such as the IEEE TRANSACTIONS
ON COMPUTERS, the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON INFORMATION SECURITY AND FORENSICS, and
the IEEE Journal on Selected Areas in Communications. He has published two
books entitled Software Similarity and Classification (Springer) and Dynamic
and Advanced Data Mining for Progressing Technological Development (1GI-
Global). His research interests include network and system security, data
analytics, distributed systems, and networking. Two of his papers were
selected as the featured articles in 2009 and 2013 issues of the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. Two of his
papers were selected as the featured articles in 2014 issues of the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. He is the
Chief Investigator of several projects in network and system security, funded
by the Australian Research Council. He has served as the Program/General
Chair for many international conferences such as SocialSec 15, IEEE DASC
15/14, IEEE UbiSafe 15/14, IEEE TrustCom 13, ICA3PP 12/11, IEEE/IFIP
EUC 11, IEEE TrustCom 13/11, IEEE HPCC 10/09, IEEE ICPADS 08, and
NSS 11/10/09/08/07. He has been the PC Member for over 60 international
conferences in distributed systems, networking, and security. He serves as an
Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, Security and
Communication Networks (Wiley), and an Editor of the Journal of Network
and Computer Applications. He is the Coordinator, Asia for IEEE Computer
Society Technical Committee on Distributed Processing.

Wanlei Zhou (M’92-SM’(09) received the B.Eng.
and M.Eng. degrees from the Harbin Institute of
Technology, Harbin, China, in 1982 and 1984,
respectively, the Ph.D. degree from Australian
National University, Canberra, Australia, in 1991,
all in computer science and engineering, and the
D.Sc. degree (higher doctorate degree) from Deakin
University in 2002. He served as a Lecturer with
| the University of Electronic Science and Technology
g A of China, Monash University, Melbourne, Australia,
and the National University of Singapore, Singapore.
He is currently the Alfred Deakin Professor (the highest honour the univer-
sity can bestow on a member of academic staff), the Chair of Information
Technology, and the Associate Dean (International Research Engagement) of
the Faculty of Science, Engineering and Built Environment, Deakin University.
He has been the Head of the School of Information Technology twice from
2002 to 2006 and from 2009 to 2015 and the Associate Dean of the Faculty of
Science and Technology in Deakin University from 2006 to 2008. He was also
a System Programmer with HP in MA, USA. His research interests include
distributed systems, network security, bioinformatics, and e-learning.

He has published over 300 papers in refereed international journals and
refereed international conferences proceedings, including over 30 articles in
the IEEE journal in the last five years. He has also chaired many interna-
tional conferences, including TrustCom, ISPA, TUCC, CSS, ICA3PP, EUC,
NSS, HPCC, and PRDC, and has been invited to deliver keynote address in
a number of international conferences, including SKG, NSS, PDCAT, NSS,
EUC, ICWL, CIT, ISPA, and ICA3PP.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


