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Abstract—There are the two common means for propagating
worms: scanning vulnerable computers in the network and
spreading through topological neighbors. Modeling the propa-
gation of worms can help us understand how worms spread
and devise effective defense strategies. However, most previous
researches either focus on their proposed work or pay attention
to exploring detection and defense system. Few of them gives a
comprehensive analysis in modeling the propagation of worms
which is helpful for developing defense mechanism against
worms’ spreading. This paper presents a survey and comparison
of worms’ propagation models according to two different spread-
ing methods of worms. We first identify worms characteristics
through their spreading behavior, and then classify various
target discover techniques employed by them. Furthermore,
we investigate different topologies for modeling the spreading
of worms, analyze various worms’ propagation models and
emphasize the performance of each model. Based on the analysis
of worms’ spreading and the existing research, an open filed
and future direction with modeling the propagation of worms is
provided.

Index Terms—Network security, Worms, Propagation, Model-
ing.

I. INTRODUCTION

WORMS and their variants have been a persistent secu-
rity threat in the Internet from the late 1980s, causing

large parts of the Internet becoming temporarily inaccessible,
huge amount of financial loss and social disruption especially
during the past decade. For example, the Code Red worm
[1] in 2001 infected at least 359,000 hosts in 24 hours and
had already cost an estimated $2.6 billion in damage to
networks previous to the 2001 attack [2]. The Blaster worm
[3] of 2003 infected at least 100,000 Microsoft Windows
systems and cost each of the 19 research universities an
average of US$299,579 to recover from the worm attacks
[4]. Conficker worm [5], [6] was the fifth-ranking global
malicious threat observed by Symantec in 2009 and infected
nearly 6.5 million computers by attacking Microsoft vulnera-
bilities. Stuxnet [7], first discovered in June 2010, is a highly
sophisticated computer worm. Initially, it targeted Siemens
industrial software and equipment. Later the same year, it
damaged the Iran nuclear program which used embargoed
Siemens equipment procured secretly. Therefore, worms and
their variants have evolved into a weapon in the information
warfare worldwide. According to the official Internet threat
report of the Symantec Corporation [8], worms and resembling
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attacks account for 1/4 of the total threats in 2009 and nearly
1/5 of the total threats in 2010. In order to prevent worms from
spreading into a large scale, researchers focus on modeling
their propagation and then, on the basis of it, investigate the
optimized countermeasures. Similar to the research of some
nature disasters, like earthquake and tsunami, the modeling
can help us understand and characterize the key properties of
their spreading. In this field, it is mandatory to guarantee the
accuracy of the modeling before the derived countermeasures
can be considered credible. In recent years, although a variety
of models and algorithms have been proposed for modeling
the propagation mechanism of worms, as well as for trying
to catch and stop the spread of worms, the propagation of
worms is still prevailing. In order to prevent worms from
propagating and to mitigate the impact of an outbreak, we
need to have a detailed and quantitative understanding of
how a worm spreads. Moreover, it is significant to know
the advantages and the limitations of the existing worms’
propagation models, which have a potentially strong impact on
predicting the spreading tendency of worms and are essential
for developing defense mechanism [9] against the spreading
of them. However, most previous researches [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22] discuss
efforts that are related to their proposed work. Some survey
papers [23], [24], [25], [26] introduce the life cycle of worms
and investigate the propagation of worms, but they focus
on exploring detection and containment systems rather than
giving a comprehensive classification and comparison of the
existing models.

Therefore, we are motivated to provide a thorough analysis
of the spreading procedure and highlight the performance of
worms’ propagation models that benefit the defense against
them. Firstly, worms leverage different kinds of methods to
identify vulnerable hosts and spread themselves. In order to
have a deep insight into how worms propagate across the
Internet, we introduce various target discovery techniques
of worms. Secondly, a network topology defines how the
computers within the network are arranged and connected to
each other. Since it plays a significant role in determining
the worms’ propagation and the overall spreading scale, we
analyze four typical topologies of networks that are widely
used in modeling the propagation of worms. Thirdly, math-
ematical models are very useful to describe the dynamics
and measure the speed of worms’ propagation. Therefore, this
paper provides a detailed study of current mathematical model
that have been established and compares their effectiveness.

The rest of the paper is organized as follows. Definition,
categorization and the propagation of worms are introduced
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in Section 2, which set the stage for later sections. A variety
of primitive and advanced target discovery techniques are pro-
vided in details in Section 3. In Section 4, typical topologies of
network for modeling the worms’ propagation are investigated.
Worm propagation models, which are the analytical tools for
describing the dynamics and measuring the propagation speed
of worms, are analyzed in Section 5. Section 6 concludes this
paper and points out future research direction in modeling the
propagation of worms.

II. DEFINITION, CATEGORIZATION AND PROPAGATION OF
WORMS

A. Definition of Worms

A computer worm is a program that self-propagates across
a network exploiting security or policy flaws in widely-used
services [27]. Worms and viruses are often placed together in
the same category, however there is a technical distinction.
A virus is a piece of computer code that attaches itself to a
computer program, such as an executable file. The spreading
of viruses is triggered when the infected program is launched
by human action. A worm is similar to a virus by design and
is considered to be a sub-class of viruses. It differs from a
virus in that it exists as a separate entity that contains all the
code needed to carry out its purposes and does not attach itself
to other files or programs. Therefore, we distinguish between
worms and viruses in that the former searches for new targets
to transmit themselves, whereas the latter searches for files in
a computer system to attach themselves to and which requires
some sort of user action to abet their propagation [28].

B. Worm Categorization

A worm compromises a victim by searching through an
existing vulnerable host. There are a number of techniques by
which a worm can discover new hosts to exploit. According
to the target-search process, we can divide worms into two
categories: scan-based worms and topology-based worms.

1) Scan-based Worms: A scan-based worm (scanning
worm) propagates by probing the entire IPv4 space or a set of
IP addresses and directly compromises vulnerable target hosts
without human interference, such as Code Red I v2 (2001),
Code Red II (2001), Slammer/Sapphire (2003), Blaster (2003),
Witty (2004) [29], Sasser (2004) [30] and Conficker (2009)
[5], [6]. A key characteristic of a scan-based worm is that
it can propagate without dependence on the topology. This
means that an infectious host is able to infect an arbitrary
vulnerable computer.

Scan-based worms employ various scanning strategies, such
as random scanning and localized scanning, to find victims
when they have no knowledge of where vulnerable hosts reside
in the Internet. Random scanning selects target IP addresses
randomly, whereas worms using the localized scanning strat-
egy scan IP addresses close to their addresses with a higher
probability compared to addresses that are further away.

2) Topology-based Worms: A topology-based worm, such
as an email worm and a social network worm, relies on the
information contained in the victim machine to locate new
targets. This intelligent mechanism allows for a far more
efficient propagation than scan-based worms that make a large

number of wild guesses for every successful infection. Instead,
they can infect on almost every attempt and thus, achieve a
rapid spreading speed. Secondly, by using social engineering
techniques on modern topological worms, most Internet users
can possibly fail to recognize malicious codes and become
infected, therefore resulting in a wide range of propagation.

A key characteristic of a topology-based worm is that it
spreads through topological neighbors. For example, email
worms, such as Melissa (1999) [31], Love Letter (2000) [32],
[33], Sircam (2001)[34], MyDoom (2004) and Here you have
(2010), infect the system immediately when a user opens a
malicious email attachment and sends out worm email copies
to all email addresses in the email book of the compromised
receiver. For social network worms such as Koobface, the
infected account will automatically send the malicious file or
link to the people in the contact list of this user.

C. The Propagation of Worms
Worms have attracted widespread attention because they

have the ability to travel from host to host and from network
to network. Before a worm can be widely spread, it must
first explore the vulnerabilities in the network by employing
various target discovery techniques. Subsequently, it infects
computer systems and uses infected computers to spread itself
automatically (as with scan-based worms) or through human
activation (as with topology-based worms).

During the propagation of worms, hosts in the network have
three different states: susceptible, infectious and removed. A
susceptible host is a host that is vulnerable to infection; an
infectious host means one which has been infected and can
infect others; a removed host is immune or dead so cannot
be infected by worms again. According to whether infected
hosts can become susceptible again after recovery, researchers
model the propagation of worms based on three major models:
SI models (if no infected hosts can recover), SIS models (if
infected hosts can become susceptible again) and SIR models
(if infected hosts can recover). On the basis of these models,
researchers also presented various defense mechanisms against
the propagation of worms.

Although a great deal of research has been done to prevent
worms from spreading, worm attacks still pose a serious
security threat to networks for the following reasons. Firstly,
worms can propagate through the network very quickly by
various means, such as file downloading, email, exploiting
security holes in software, etc. Some worms can potentially
establish themselves on all vulnerable machines in only a
few seconds [10]. Secondly, the rapid advances of computer
and network technologies allow modern computer worms
to propagate at a speed much faster than human-mediated
responses. Thirdly, in order to propagate successfully, worms
are becoming more complicated and increasingly efficient. It
is therefore of great importance to characterize worm attack
behaviors and analyze propagation procedures, which can
efficiently provide patch strategies for protecting networks
from worm attacks.

III. TARGET DISCOVERY TECHNIQUES OF WORMS

Worms employ distinct propagation strategies such as ran-
dom, localized, selective and topological scanning to spread.
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Fig. 1. Graphical representation of random scanning

In this subsection, we discuss these target discovery techniques
and some of their different sub-classes.

A. Scan-based Techniques

Scanning is a very common propagation strategy due to
its simplicity and is the most widely employed technique by
some well-known scan-based worms such as Code Red, Code
Red II, Slammer, Blaster, Sapphire, and Witty worm. Scan-
based techniques probe a set of addresses to randomly identify
vulnerable hosts or work through an address block using an
ordered set of addresses [27].

1) Random Scanning: Random scanning selects target IP
addresses randomly, which leads to a fully-connected topology
with identical infection probability β for every edge (shown in
Fig. 1). Several types of scanning strategies, such as uniform,
hit-list, and routable scanning, are implemented on the basis
of random scanning.

a) Uniform Scanning: Uniform scanning is the simplest
strategy to compromise targets when a worm has no knowl-
edge of where vulnerable hosts reside. It picks IP addresses to
scan from the whole IPv4 address space with equal probability.
This means a worm selects a victim from its scanning space
without any preference. Thus, it needs a perfect random
number generator to generate target IP addresses at random.
Some famous worms, such as Code Red I v1 and v2 [1],
and Slammer [35] employed this scanning approach to spread
themselves. However, Code-Red I v1 used a static seed in its
random number generator and thus generated identical lists
of IP addresses on each infected machine. This meant the
targets probed by each infected machine were either already
infected or impregnable. Consequently, Code-Red I v1 spread
slowly and was never able to compromise a high number of
hosts. Code-Red I v2 used a random seed in its pseudo-random
number generator and thus, each infected computer tried to
infect a different list of randomly generated IP addresses. This
minor change resulted in more than 359,000 machines being
infected with Code-Red I v2 in just fourteen hours [36].

b) Hit-list Scanning: Hit-list scanning was introduced by
Staniford et al. [10], which can effectively reduce the infection
time at the early stage of worm propagation. A hit-list scanning
worm first scans and infects all vulnerable hosts on the hit-
list, then continues to spread through random scanning. The
vulnerable hosts in the hit-list can be infected in a very short
period because no scans are wasted on other potential victims.
Hit-list scanning hence effectively accelerates the propagation
of worms at the early stage. If the hit-list contains IP address
of all vulnerable hosts, (called a complete hit-list), it can be
used to speed the propagation of worms from beginning to
end with the probability of hitting vulnerable or infected hosts
equal to 100%. Flash worm [10] is one such worm. It knows
the IP addresses of all vulnerable hosts in the Internet and
scans from this list. When the worm infects a target, it passes
half of its scanning space to the target, and then continues
to scan the remaining half of its original scanning space. If
no IP address is scanned more than once, then a flash worm
is the fastest spreading worm in terms of its worm scanning
strategy [37]. Due to bandwidth limitation, however, flash
worms cannot reach their full propagation speed. Furthermore,
in the real world it is very hard to know all vulnerable hosts’
IP addresses. Therefore, complete hit-list scanning is difficult
for attackers to implement considering the global scale of the
Internet.

c) Routable Scanning: The routable scanning approach
probes each IP address from within the routable address space
in place of the whole IPv4 address space. Therefore, it needs
to determine which IP addresses are routable. Zou et al.
[38] presented a BGP routable worm as BGP routing tables
contain all routable IP addresses. Through scanning the BGP
routing table, the scanning address space Ω of BGP routable
worms can be effectively reduced without missing any targets.
Currently about 28.6% of the IPv4 address has been allocated
and is routable. However, worms based on BGP prefixes have
a large payload, which leads to a decrease in the propagation
speed. Consequently, a Class A routing worm was presented
by Zou et al. [38], which uses IPv4 Class A address allocation
data. The worm only needs to scan 116 out of 256 Class
A address space, which contributes 45.3% of the entire IPv4
space. Routable scanning therefore, improves the spreading
speed of worms by reducing the overall scanning space.

2) Localized Scanning: Instead of selecting targets at ran-
dom, worms prefer to infect IP addresses that are closer by.
Localized scanning strategies choose hosts in the local address
space for probing. This leads to a fully-connected topology
as shown in Fig. 2, where nodes within the same group
(group 1 or group 2) infect each other with the same infection
probability β1, while nodes from different groups infect each
other with infection probability β2.

a) Local Preference Scanning: Since vulnerable nodes
are not uniformly distributed in the real world, a worm can
spread itself quickly when it scans vulnerability dense IP
areas more intensively. For this reason, the local preference
scanning approach is implemented by attackers, which selects
target IP addresses close to a propagation source with a
higher probability than addresses farther away. Some localized
scanning worms (Code Red II [39], [40], [41], [42] and Blaster
worm [11]) propagate themselves with a high probability
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Fig. 2. Graphical representation of localized scanning

in certain IP addresses for the purpose of increasing their
spreading speed. Taking Code Red II as an example, the
probability of the virus propagating to the same Class A IP
address is 3/8; to the same Class A and B IP address is 1/2;
and to a random IP address is 1/8.

b) Local Preference Sequential Scanning: Different from
random scanning, the sequential scanning approach scans IP
addresses in order from a starting IP address selected by a
worm [37]. Blaster [43] is a typical sequential scan worm
because it chooses its starting point locally as the first address
of its Class C /24 network with a probability of 0.4 and a
random IP address with a probability of 0.6. In selecting the
starting point of a sequence, if a close IP address is chosen
with higher probability than an address far away, we use
the term ’local preference sequential scanning’. According to
an analysis in [37], a worm employing a local preference
sequential scanning strategy is more likely to repeat the
same propagation sequence, which results in wasting most
of the infection power of infected hosts. Consequently, the
local preference sequential scanning approach slows down the
spreading speed in the propagation of worms.

c) Selective Scanning: Selective scanning is imple-
mented by attackers when they plan to intentionally destroy
a certain IP address area rather than the entire Internet,
that is, the scanning space is reduced to those selected IP
addresses. The selective scanning strategy can lead to an
arbitrary topology as shown in Fig. 3, where node 4 scans
nodes 1, 8 and 7 with infection probability β. If a worm
only scans and infects vulnerable hosts in the target domain,
it is referred to as Target-only scanning. In selective scanning,
attackers care more about the spreading speed of a worm
in the target domain than the scale of the infected network.
According to the analysis in [37], target-only scanning can
accelerate the propagation speed if vulnerable hosts are more
densely distributed in the target domain.

B. Topology-based Techniques

Topology-based (or topological scanning) techniques are
mainly used by worms spreading through topological neigh-
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Fig. 3. Graphical representation of selective scanning

bors. This strategy can lead to an arbitrary topology, as shown
in Fig. 4, where node Ni(i = 1, 2, ..., 8) scans its neighbors
with a different infection probability βi(i = 1, 2, ..., 10).
Note that the topology discussed in this section reflects the
logical connection between the Internet users and their social
friend. A typical example of worms that employ topology-
based techniques to launch attacks are email worms. When an
email user receives an email message and opens the malicious
attachment, the worm program will infect the user’s computer
and send copies of itself to all email addresses that can
be found in the recipient’s machine. The addresses in the
recipient’s machine disclose the neighborhood relationship.
Melissa [44] is a typical email worm which appeared in 1999.
It looks through all Outlook address books and sends a copy of
itself to the first 50 individuals when an infected file is opened
for the first time. After Melissa, email worms have become
annoyingly common, completed with toolkits and improved
by social engineering, such as Love letter in 2000, Mydoom
in 2004 and W32.Imsolk in 2010. Recently, topology-based
techniques have been used by some isomorphic worms such
as Bluetooth worms [12], p2p worms [13], [45], and social
networks worms [46]. For example, Koobface [47] spreads
primarily through social networking sites. It searches the
friend list of a user and posts itself as links to videos on
their friend’s website. When a user is tricked into visiting the
website that hosts the video, they are prompted to download
a video codec or other necessary update, which is actually a
copy of the worm. Users may have difficulty determining if a
link was posted by a friend or the worm.

Topology-based techniques utilize the information con-
tained in the victim’s machine to locate new targets. This intel-
ligent mechanism allows for a far more efficient propagation
than scan-based techniques that make a large number of wild
guesses for every successful infection. Instead, they can infect
on almost every attempt and thus, achieve a rapid spreading
speed. A common feature of topology-based techniques is
to involve human interference in the propagation of worms.
Taking email worms as an example, the worm program can
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infect the user’s machine and become widespread only when
an email user opens the worm email attachment. Thus, whether
or not a computer can be infected by malicious emails is de-
termined by human factors including the user’s personal habits
of checking emails and the user’s security consciousness.

IV. TOPOLOGIES FOR MODELING THE PROPAGATION OF
WORMS

The topology of a network plays a critical role in deter-
mining the propagation dynamics of a worm. In the research
of epidemic modeling, many types of networks (for example,
[11], [14], [48], [49], [50], [51], [52]) are adopted to study
the effect of epidemic propagation. In this section, we will
introduce four typical topologies of networks that are widely
used in modeling the propagation of worms.

A. Homogenous Networks

In a homogenous network, each node has roughly the same
degree. A fully-connected topology and a standard hypercubic
lattice are two typical examples of homogeneous networks.
The propagation of worms on homogenous networks satisfies
the homogenous assumption that any infected host has an
equal opportunity to infect any vulnerable host in the net-
work. Thus, there is no topological issue in the homogenous
networks. In real scenarios, most scan-based worms, such as
Code Red I, Code Red II, and Slammer, exploit vulnerabilities
through scanning the entire or part of IP space without any
dependence on the properties of the Internet topology. Thus,
homogeneous networks are more suitable for modeling the
spreading of scan-based worms.

Recently, many researches [10], [37], [39], [11] studied
random scanning worms on homogenous networks using dif-
ferential equation models. These models assume all hosts in
the network can contact each other directly and thus, their
topologies are treated as fully-connected graphs. Chen et al.
[11] proposed an analytical active worm propagation (AAWP)
model for randomly scanning worms on the basis of homoge-
nous networks. Yan and Eidenbenz [12] present a detailed
analytical model that characterizes the propagation dynamics

of Bluetooth worms. It assumes all individual devices are
homogenously mixed. Zou et al. [39] proposed a two-factor
worm model to characterize the propagation of the Code Red
worm. This model adopts the homogeneous network, that
is, they consider worms that propagate without the topology
constraint.

B. Random Networks
A random network is a theoretical construct which con-

tains links that are chosen completely at random with equal
probability, such as Erdös-Renyi (ER) random network [48].
Using a random number generator, one assigns links from
one node to a second node. Random links typically result in
shortcuts to remote nodes, thus shortening the path length to
otherwise distant nodes [53]. A random network is a non-
homogenous network, which means each node may not have
same node degree. When a worm propagates on the random
graph network, the random-graph topology has an impact on
the spreading procedure. Recent work [54], [55] provided
mechanisms to specify the degree distribution when construct-
ing random graphs and further characterize the size of the
large connected component. Fan and Xiang [13] investigated
the impact of worm propagation over a simple random graph
topology. It assumes each host has the same out-degree. Hosts
to which each host has an outbound link are randomly selected
from all hosts except the host itself. Of course, the degrees of
nodes in a random graph may not be all equal. Zou et al. [14]
studied the email worm propagation on a random graph. The
random graph network was constructed with n vertices and an
average degree E[k]≥2. Here, k represents the vertex degree of
a node in a graph. The mean of degrees in a graph is denoted
by E[k]. From the analysis of Zou’s model, a random graph
cannot reflect a heavy-tailed degree distribution and thus, it is
not suitable for modeling topology-based worms.

C. Small-World Networks
A small-world network is a type of mathematical graph,

which interpolates between a regular network and a random
network. It occurs by replacing a fraction p of the links of
a d dimensional lattice with new random links. In a small-
world network, most nodes are not neighbors of one another,
but can be reached from every other node by a small number
of hops or steps. Small-world networks are highly clustered
and have a small characteristic path [56]. Some researchers
have observed the dynamic propagation of worms on small-
world networks. G. Yan et al. [57] considered the BrightKite
graph to investigate the impact of malware propagation over
online social networks. Compared with the random graph,
the BrightKite graph [58] has a similar average shortest
path length and a smaller clustering coefficient, and thus, it
closely reflects a small-world network structure. Zou et al. [14]
modeled email worm propagation on a small-world network
that has an average degree E[k]>4. It firstly constructs a
regular two-dimensional grid network and then connects two
randomly-chosen vertices repeatedly until the total number of
edges reaches E[k]· n/4. From the analysis of Zou’s model, a
small-world network still cannot provide a heavy-tailed degree
distribution and thus, is not suitable for modeling topology-
based worms.
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D. Power-Law Networks

Power-law networks are networks where the frequency fd
of the out-degree d is proportional to the out-degree to the
power of a constant α: fd ∝ dα [59]. The constant α is
called the power-law exponent. In a power-law network, nodes
with the maximum topology degree are rare and most nodes
have the minimum topology degree. Recent works have shown
that many real-world networks are power-law networks such
as social networks [60], [51], [61], [62], [63], [64], neural
networks [65], and the Web [66], [67].

Zou et al. [14] and Ebel et al. [49] investigated email groups
and found that they exhibited characteristics of a power-law
distribution. The simulation model proposed by Zou et al. [14]
studied the dynamic propagation of an email worm over a
power-law topology. Although email worms spread slower on
a power-law topology than small world topology or random
topology, the immunization density is more effective on a
power-law topology. Fan and Xiang [13] presented a logic 0-
1 matrix model and observed the propagation of worms on a
pseudo power law topology. Z. Chen and C. Ji [68] constructed
a spatial-temporal model and analyzed the impact of malware
propagation on a BA (Bárabási-Albert) network [67], which
is a type of power-law network. W. Fan et al. [46] assumed
that the node degree of Facebook users exhibits the power-law
distribution and constructed the network using two models: the
BA (Bárabási-Albert) model and the GLP (Generalized Linear
Preference) model.

E. Perspective of Real World Topologies

Topology properties affect the spread of topology-based
worms, which can either impede or facilitate their propagation
and maintenance. Existing works [14], [68], [50] show that
structures and characters of the network have strong impact on
the spreading speed and scale of worms. However, in this field,
all existing research adopts simulation to evaluate analytical
models, such as [68], [69]. In real-world scenarios, the spread
of most worms (e.g. email worms) is typically impossible
to track given the directed, topological manner in which
they spread. Thus, researchers generally adopt simulations to
evaluate proposed models. Although some worms, such as
Nyxem [70] (an email worm), can automatically generate a
single http request for the URL of an online statistics page
when it compromised a computer, the statistics of Nyxem also
cannot present a precise investigation on the spread of email
worms due to the legitimate access, repeated probes and DDoS
attacks to the web page [71]. Thus, most current researches
mainly rely on the above four network topologies, which
reflect the characters of real network essentially, to investigate
the propagation procedure of worms. For example, in terms
of the scan-based worms, most of them propagate through the
Internet and are able to directly hit a target without human
activation, thus they are more suitable for being modeled by
homogenous networks.

The characters of social networks and the impacting of
social structures on the propagation of worms have been inten-
sively investigated in many works [57], [68], [60]. Adamic et
al. [60] found that the network exhibits small-world behavior
through studying an early online social network. Mislove et al.

[51] presented a large-scale measurement study and analysis
of the structure of four popular online social networks: Flickr,
Orkut, YouTube and LiveJournal. Their results confirm the
power-law, small-world and scale-free properties of online
social networks. Yan et al. [57] studied the BrightKite network
and found that the highly skewed degree distributions and
highly clustered structures shown in many social networks
are instrumental in spreading the malware quickly at its early
stage.

The topology of an email network plays a critical role in
determining the propagation dynamics of an email worm [14],
[49]. Zou et al. [14] examined more than 800,000 email groups
in Yahoo! and found that it is heavy-tailed distributed, which
exhibits the character of power-law networks. Ebel et al. [49]
studied the topology of email network that constructed from
log files of the email server at Kiel University and found that it
exhibits a scale-free link distribution and pronounced small-
world behavior. Although the topology of social and email
networks varies, we can derive the structure of topologies on
the basis of previous statistical analysis in real social [51],
[72], [73], [74], [75], and then, use 2K-series method [76] to
generate the social topologies.

Modeling the propagation of the topology-based worms
should be independent of the network topologies. It means
that the models can be effective and correct in any kind
of network topology and can reflect the tendency of the
spreading of worms. However, the accuracy of modeling can
be impacted by different network topologies [68], [71]. The
essence of the inaccuracy is caused by the spreading cycles
in the propagation path [71]. The spreading cycles formed
in the modeling lead to considerable errors in estimating
the infection probabilities. Different topologies have different
number of spreading cycles. The probabilistic effect from
these cycles also varies according to their network structure.
Thus, one modeling method may have different performance
in the accuracy when topology changes.

In order to eliminate the errors caused by the spreading
cycles, previous analytical models, such as [11], [12], [68],
[77], assume nodes in the network to be spatial independent.
However, this assumption results in the overestimation of the
number of infected users. To address this problem, Chen et
al. [68] approximated the reciprocal spreading probabilities
through a Markov model, which can partially avoid the over-
estimation caused by the dependency between users and their
neighbors. Nevertheless, it only focuses on removing 1-order
cycles but not higher order cycles. It is not enough to eliminate
the errors. Consequently, the model cannot effectively reduce
the errors and accurately estimate the infection probabilities.
To overcome the shortcoming of the Markov model, Wen et
al. [71] proposed a spatial-temporal analytical model and pro-
vided a stronger approximation of spatial dependence. They
found that the cycles from 1-order to 5-order have significant
effect on the propagation, and thus, they need to be removed in
the modeling. The model in [71] is able to eliminate the effect
of the spreading cycles. Therefore, it can avoid overestimation
of propagation probabilities through removing the effect of
spreading cycles and effectively resolve the impact on the
modeling caused by different network topologies.
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V. WORM PROPAGATION MODELS

In the area of network security, worms have been studied
for a long time [23], [24], [25]. Early works mainly refer
to the academic thought on epidemic propagation and thus,
models are constructed according to the state transition of
each host including Susceptible-Infectious (denoted by ’SI’)
models [78], Susceptible-Infectious-Susceptible (denoted by
’SIS’) models [79], and Susceptible-Infectious-Recovered (de-
noted by ’SIR’) models [50], [80], [72]. In the SI framework,
all hosts stay in one of only two possible discrete states at
any time: susceptible or infectious, which ignores the recovery
process. The difference between SIS models and SIR models
depends on whether infected hosts can become susceptible
again after recovery. If this is the case, we use the term SIS
model. Otherwise, if a host cannot become susceptible again
once it is cured, we use the SIR model, where all hosts stay in
one of only three states at any time: susceptible (denoted by
’S’), infectious (denoted by ’I’), removed (denoted by ’R’).

Currently, many mathematical models [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22] have been
proposed for investigating the propagation of scan-based and
topology-based worms on the basis of different state transition
models. For the convenience of readers, we list typical worm
propagation models in Fig.5 In the figure, according to the
target discovery techniques of worms, the models are primarily
divided into two categories. Each model is further divided
into subcategories (Fig. 5). Each one of these categories is
discussed in the following sections.

A. Homogenous Scan-based Model

The homogenous worm propagation model relies on the
homogeneous assumption that each infectious host has an
equal probability of spreading the worm to any vulnerable
peer in a network. Hence, the homogenous model is based
on the concept of a fully connected graph and is an un-
structured worm model that ignores the network topology. It
can accurately characterize the propagation of worms using
scan-based techniques to discover vulnerable targets, such as
Code Red [81], [82], Code Red II [39], and Slammer [35].
Scan-based worms scan the entire network and infect targets
without regard to topological constraints which means that an
infectious host is able to infect an arbitrary vulnerable peer.
Up to now, many researchers have modeled the propagation
procedure of different types of scan-based worms on the basis
of the homogenous assumption. The homogenous model can
be further divided into two categories: continuous time and
discrete time. A continuous time model is expressed by a
set of differential equations, while a discrete time model is
expressed by a set of difference equations.

1) Continuous-time Model:
a) Classical Simple Epidemic Model: The Classical Sim-

ple Epidemic Model [78], [15], [83], [84], [85] is a SI model.
In this model, the state transition of any host can only be
S→I, and it is assumed a host will remain in the ’infectious’
state forever once it has been infected by a worm. Denote
by I(t) the number of infectious hosts at time t; N the total
number of susceptible hosts in the network before a worm
spreads out. Thus, the number of susceptible hosts at time t

is equal to [N − I(t)]. The classical simple epidemic model
for a finite population can be represented by the differential
equation below:

dI(t)

dt
= βI(t)[N − I(t)] (1)

where, β stands for the pair-wise rate of infection in epidemi-
ology studies [83] . It represents a ratio of infection from
infectious hosts to susceptible hosts. At the beginning, t = 0,
I(0) hosts are infectious, and in the other [N− I(0)] all hosts
are susceptible.

The Classical Simple Epidemic Model is the most simple
and popular differential equation model. It has been used in
many papers (for example, [10], [37], [39], [11]) to model
random scanning worms, such as Code Red [39] and Slammer
[35].

b) Uniform Scan Worm Model: If a worm (i.e. Code Red,
Slammer) has no knowledge of the distribution of vulnerable
hosts in the network, uniformly scanning all IP addresses is
the simplest method to spread itself. Once a host is infected
by a worm, it is assumed to remain in the infectious state
forever. The uniform scan worm model specifies the abstract
parameter β in the classical simple epidemic model based on
information pertaining to the scanning rate and IP space of
the network. Denote by I(t) the number of infectious hosts at
time t; N the total number of susceptible hosts in the network
before a worm spreads out. Thus [N − I(t)] is the number of
susceptible hosts at time t. Suppose an average scan rate η
of a uniform scan worm is the average number of scans an
infected host sends out per unit of time. Denote by δ the
length of a small time interval. Thus, an infected host sends
out an average of ηδ scans during a time interval δ. Suppose
the worm uniformly scans the IP space that has Ω addresses,
every scan then has a probability of 1/Ω(1/Ω � 1) to hit any
one IP address in this scanning space. Therefore, on average,
an infected host has probability q to hit a specific IP address
in the scanning space during a small time interval δ.

q = 1− (1− 1/Ω)nδ ≈ nδ/Ω, 1/Ω � 1 (2)

Here, during the time interval δ, the probability that two
scans sent out by an infected host will hit the same vulnerable
host is negligible when δ is sufficiently small. Consequently,
the number of infected hosts at time t+ δ will be:

I(t+ δ) = I(t) + I(t) · [N − I(t)]ηδ/Ω (3)

Taking δ → 0, according to the epidemic model (1), the
uniform scan worm model can be represented by (4):

dI(t)

dt
=

η

Ω
I(t)[N − I(t)] (4)

At time t = 0, I(0) represents the number of initially infected
hosts and [N − I(0)] is the number of all susceptible hosts.

Some variants of random scanning worms (hit-list worms
[10], flash worms [10], [37], and routable worms [86]) cannot
be directly modeled by (4). However, through the extension
of the uniform scan worm model, the propagation of these
variants of worms can be accurately modeled.
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Fig. 5. Taxonomy of worm modeling

Staniford et al. [10] introduced a variant of random scanning
worms, called the hit-list worm. It first scans and infects all
vulnerable hosts on the hit-list, then randomly scans the entire
Internet to infect others just like an ordinary uniform scan
worm. We can assume the vulnerable hosts on the hit-list to be
the initially infected hosts I(0) and ignore the compromising
time since they can be infected in a very short time [10]. As
a result, a hit-list worm can be modeled by (4) along with a
large number of initially infected hosts determined by the size
of the worm’s hit-list.

A flash worm is a variant of the hit-list strategy, introduced
by Staniford et al. [10]. When a flash worm infects a target,
it simply scans half of its scanning space as the other half
has been passed to the target including the target host. Since
it knows the IP addresses of all vulnerable hosts, that is, the
size of scanning space Ω = N , which is much smaller than
the entire IPv4 address space (Ω = 232), and because no
IP address is scanned more than once, the flash worm could
possibly infect most vulnerable hosts in the Internet in tens of
seconds. For this reason, the time delay caused by the infection
process of a vulnerable host cannot be ignored in modeling
the spreading of flash worms. Denote by ε the time delay,
which is the time interval from the time when a worm scan
is sent out to the time when the vulnerable host infected by
the scan begins to send out worm scans. We assume a flash
worm uniformly scans the address list of all vulnerable hosts.
Then, based on the uniform scan model (4), the flash worm
(uniform scanning) can be modeled by (5):

dI(t)

dt
=

η

N
I(t− ε)[N − I(t)], I(t− ε) = 0, ∀t < ε (5)

Another variant of random scanning worms is a routable
worm. Zou et al. [38] found that currently around 28.6%
of IPv4 addresses are routable and thus, they presented a
BGP routing worm. It uses BGP routing prefixes to reduce
the worm’s scanning space Ω. When a BGP routing worm
uniformly scans the BGP routable space, it can be modeled
by (4), where Ω equals 28.6% of all IP addresses.

Zou et al. [37] investigated and compared the propagation
performance of random scanning worms and their variants (for
example, Code Red, a hit-list worm, a flash worm and a BGP
routable worm). Assume the number of vulnerable hosts (N )
is 360 000, and worms have the same scan rate, i.e., η =
358/min. Suppose the size of a worm’s hit-list is 10 000, that
is, I(0) = 10000, while Code Red, the flash worm and the
BGP routable worm have 10 initially infected hosts, that is,
I(0) = 10. The scanning space for the BGP routable worm
is 28.6% of the entire IP address space, while the Code Red
worm and the hit-list worm scan all IP addresses Ω = 232.
For the flash worm, the scanning space Ω = N . From the
results of the experiment shown in Fig. 6, the flash worm is
the fastest spreading worm, which finishes infection within
20 seconds, while Code Red finishes infection after around
500 minutes. At the early stage of propagation, because of a
large number size of the hit-list, the hit-list worm can infect
more vulnerable hosts than Code Red and the BGP routable
worm. Compared with Code Red and the hit-list worm, the
BGP routable worm has a smaller scanning space and thus,
the infection speed of the routable worm is faster.

c) RCS Model: Staniford et al. [10] presented a RCS
(Random Constant Spread) model to simulate the propagation
of the Code Red I v2 worm, which is almost identical to
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Fig. 6. Worm propagation of Code Red, BGP routable, hit-list, and flash
worm

the classical simple epidemic model. Let a(t) = I(t)/N be
the fraction of the population that is infectious at time t.
Substituting I(t) in equation (1) with a(t), and then deriving
the differential equation (6) below, yields the equation used in
[10]:

da(t)

dt
= ka(t)[1− a(t)] (6)

with solution:

a(t) =
ek(t−T )

1 + ek(t−T )
(7)

where, k = βN , and T is a constant of integration that fixes
the time position of the incident. Differential equation (6)

is a logistic equation. For early t, a(t) grows exponentially,
that is, the number of infectious hosts is nearly exponentially
increased at the early stage of worm propagation. For large t,
a(t) goes to 1 (all susceptible hosts are infected).

d) Classical General Epidemic Model: Different
from the classical simple epidemic model, the Kermack-
McKendrick model considered the removal process of
infectious hosts [78]. In the Kermack-McKendrick model,
all hosts stay in one of only three states at any time:
susceptible (denoted by ’S’), infectious (denoted by ’I’),
removed (denoted by ’R’). Once a host recovers from the
disease, it will be immune to the disease and stay in the
’removed’ state forever. The removed hosts can no longer be
infected and they do not try to infect others. Therefore, the
Kermack-McKendrick model is in the framework of a SIR
model.

Let I(t) denote the number of infectious hosts at time t
and use R(t) to denote the number of removed hosts from
previously infectious hosts at time t. Denote β as the pair-
wise rate of infection and γ as the rate of removal of infectious
hosts. Then, based on the classical simple epidemic model (1),
the Kermack-McKendrick model can be represented by (8):

dI(t)

dt
= βI(t)[N − I(t)−R(t)]− dR(t)

dt
dR(t)

dt
= γI(t)

(8)

where, N is the size of the finite population. The Kermack-
McKendrick model improves the classical simple model by
introducing a ’removed’ state for each host which means some
infectious hosts either recover or die after some time.

e) Two-factor Model: The Kermack-McKendrick model
includes the removal of infectious hosts in the propagation
of worms, but it ignores the fact that susceptible hosts can
also be removed due to patching or filtering countermeasures.
Furthermore, in the real world, the pair-wise rate of infection
β decreases with the time elapsed in the spreading procedure
due to the limitation of network bandwidth and Internet infras-
tructure, while the Kermack-McKendrick model assumes β is
constant. Therefore, Zou et al. [39] introduced a two-factor
model, which extends the Kermack-McKendrick model by
considering human countermeasures and network congestion.

In the two-factor model, the removal process consists of two
parts: removal of infectious hosts and removal of susceptible
hosts. Denote R(t) as the number of removed hosts from
the infectious population and Q(t) as the number of removed
hosts from the susceptible population. R(t) and Q(t) involve
people’s security awareness against the propagation of worms.
Moreover, in consideration of the slowed down worm scan
rate, the pair-wise infection rate β is modeled as a function of
time t, β(t), which is determined by the impact of worm traffic
on Internet infrastructure and the spreading efficiency of the
worm code. Then, the two-factor model can be represented by
(9):

dI(t)

dt
= βI(t)[N − I(t)−R(t)−Q(t)]− dR(t)

dt
dR(t)

dt
= γI(t)

(9)
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where, N is the finite population size; I(t) denotes the number
of infectious hosts at time t; β(t) is the pair-wise rate of
infection at time t; and γ stands for the rate of removal of
infectious hosts. The two-factor model improves the Kermack-
McKendrick model through consideration of two major factors
that affect worm propagation: human countermeasures like
cleaning, patching or filtering and the slowing down of the
worm infection rate.

2) Discrete-time Model:
a) AAWP Model: Chen, Gao and Kwiat [11] presented

an AAWP (Analytical Active Worm Propagation) model to
take into account the characteristics of random scanning
worms spreading according to the homogenous assumption. It
assumes that worms can simultaneously scan many machines
in a fully-connected network and no hosts can be repeatedly
infected. In this model, active worms scan the whole IPv4
address (Ω = 232) with equal likelihood, therefore, the
probability any computer is hit by one scan is 1/232. Denote
mt as the total number of vulnerable hosts (including the
infected hosts); denote nt as the number of infected hosts
at time tick t(t ≥ 0). At time tick t = 0, the number of
initially vulnerable hosts m0 is equal to N and the number of
initially infected hosts n0 is equal to h. We suppose s is the
scanning rate, and the number of newly infected hosts in each
time tick t is equal to (mi −ni)[1− (1− 1/232)snt ]. Assume
that d represents the death rate and p denotes the patching
rate. Then, in each time tick the number of vulnerable hosts
without being infected and the number of healthy hosts will
be (d+p)nt. Therefore, on average in the next time tick t+1,
the number of total infected hosts can be represented by (10):

nt+1 = nt + (mt − nt)[1− (1 − 1

232
)snt ]− (d+ p)nt (10)

In each time tick, the total number of vulnerable hosts
including infected hosts is (1 − p)mt, and thus, at time tick
t, mt = (1 − p)tm0 = (1 − p)tN . Therefore, we can derive
(11) as follows:

nt+1 = (1−d−p)nt+[(1−p)tN−nt][1−(1− 1

232
)snt ] (11)

where t ≥ 0 and n0 = h. Formula (11) models the propagation
of random scanning worms analytically, and the iteration
procedure will stop when all vulnerable hosts are infected or
the number of infected hosts remains the same when worms
spread.

b) Bluetooth Worm Model: G. Yan and S. Eidenbenz
[12] presented a detailed analytical model that characterizes
the propagation dynamics of Bluetooth worms. It captures
not only the behavior of the Bluetooth protocol but also the
impact of mobility patterns on the propagation of Bluetooth
worms. This model assumes all individual Bluetooth devices
are homogeneously mixed and advances time in a discrete
fashion. Through analyzing a single infection cycle, it derives
the duration of an infection cycle Tcycle(t) and the number of
new infections out of the infection cycle α(t). According to
the pair-wise infection rate β(t) derived from α(t) and new
average density of infected devices at time t, this model can
estimate the Bluetooth worm propagation curve. From this

model, the average density of infected devices in the network
at time tk+1 is defined by (12):

i(tk+1) =

i(tk) · ρ(tk)

i′(tk) + (ρ(tk)− i′(tk))e−α′·ρ(tk)/(ρ(tk)−i′(tk))

(12)

where i′(tk) is the maximum value between i(t) and 1/Sinq(t)
to ensure at least one infected device in the radio signal covers.
ρ(tk) is the average device density at time tk. Since the worm
growth rate can change, and in order to avoid overestimating
the number of new infections out of the infection cycle, it uses
α′ to achieve a better estimation of worm propagation, which
is defined by (13):

α′ =
ρ(tk)− i(tk)

ρ(tk)
· α(tk) + i(tk)

ρ(tk)
· α(tx) (13)

At the early phase, α′ is close to αtk and at the late state
of the worm propagation, α′ is close to α(tx). Here, txis the
latest time when an infected device starts their infection cycle
after time t but before time tk+1. This model predicts that
the Bluetooth worm spreads quickly once the density of the
infected devices reach 10 percent, although it propagates very
slowly at the early stage.

B. Localized Scan-based Model

Since vulnerable nodes are not uniformly distributed, some
localized scanning worms (Code Red II [39], [40], [41] and
Blaster worm [11]) propagate the virus with a high probability
in certain IP addresses for the purpose of increasing their
spreading speed. Taking Code Red II as an example, the
probability of the virus propagating to the same Class A IP
address is 3/8; to the same Class A and B IP address is 1/2;
and to a random IP address is 1/8. Therefore, the localized
scanning worm employs a non-homogenous pattern to spread
itself in the network. The localized scan-based model can
be further divided into two categories: continuous time and
discrete time. A continuous time model is expressed by a
set of differential equations, while a discrete time model is
expressed by a set of difference equations.

1) Continuous-time Model:
a) Local Preference Model: Zou et al. [37] took advan-

tage of a continuous time model to describe the spread of
localized scanning worms. In this local preference model, it is
assumed that a worm has probability p of uniformly scanning
IP addresses that have the same first n bits and probability
(1 − p) of uniformly scanning other addresses. Suppose that
the worm scanning space contains K networks where all IP
addresses have the same first n bits and each network has
Nk(k = 1, 2, ...,K) initially vulnerable hosts. Denote by Ik(t)
the number of infected hosts in the k-th network at time t; and
denote by β′ and β′′ the pair-wise rates of infection in local
scan and remote scan, respectively. Then we have:

β′ =
pη

232−n
, β′′ =

(1− p)η

(K − 1)232−n

dIk(t)

dt
= [β′Ik(t) +

∑

j �=k

β′′Ij(t)] · [Nk − Ik(t)]
(14)
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where η represents the average number of scans an infected
host sends out per unit of time. Since hosts are not uniformly
distributed over the whole Internet, this model supposes only
the first m networks (m < K) have uniformly distributed
vulnerable hosts, i.e., N1 = ... = Nm = N/m,Nm+1 = ... =
Nk = 0. Thus, the worm propagation on each network follows
(15):

dIk(t)

dt
= [β′ +(m− 1)β′′] · Ik(t)[Nk − Ik(t)], k = 1, 2, ...,m

(15)
Suppose Ik(0) = I1(0) > 0, k = 2, 3, ...,m. We then have:

dI(t)

dt
= [

β′ + (m− 1)β′′

m
] · I(t)[N − I(t)] (16)

(14) describes the number of newly infected hosts at time
tick t with respect to the entire Internet. This local preference
model uses differential equations to reflect the propagation of
localized worms that probe different IP addresses with their
own preference probabilities.

2) Discrete-time Model:
a) LAAWP Model: LAAWP (Local Analytical Active

Worm Propagation) model is a discrete time model extended
from the AAWP model [11]. It characterizes the propagation
of worms employing the localized scanning strategy to probe
subnets. The worm scans a random address with a probability
of p0. For an address with the same first octet, the probability
is given by p1, while an address with the same first two octets
is scanned with probability p2. In order to simplify the model,
both the death rate and patching rate are ignored in the AAWP
model. This model assumes localized worms scan a subnet
containing 216 IP addresses instead of the whole Internet. This
subnet is divided into three parts according to the first two
octets. Subnet 1 is a special subnet, which has a larger hit-
list size. The average number of infected hosts in subnet 1 is
denoted b1 and the average number of scans hitting subnet 1
is represented by k1. Subnet 2 contains 28 − 1 subnets which
have the same first octet as subnet 1. The average number of
infected hosts in subnet 2 is denoted by b2 and the average
number of scans hitting subnet 2 is represented by k2. The
other 216 − 28 subnets belong to subnet 3, which has b3
infected hosts and k3 scans on average. Therefore, the number
of infected hosts in the next time tick is represented by (17):

bi+1 = bi + (
N

216
− bi)ni[1− (1 − 1

216
)ki ] (17)

where i=1, 2, or 3. ki (i=1, 2 or 3) indicates the total number
of scans in different subnets coming from the local subnet, the
same first octet subnets and the global subnets. The calculation
of ki (i=1, 2 or 3) is as follows:

k1 =p2sb1 + p1s�b1 + (28 − 1)b2	/28
+ p0s�b1 + (28 − 1)b2 + (216 − 28)b3	/216

k2 =p2sb2 + p1s[b1 + (28 − 1)b2]2
8

+ p0s[b1 + (28 − 1)b2 + (216 − 28)b3]/2
16

k3 =p2sb3 + p1sb3

+ p0s[b1 + (28 − 1)b2 + (216 − 28)b3]/2
16

The LAAWP model adopts deterministic approximation to
reflect the spreading of worms that preferentially scans targets
close to their addresses with a higher probability.

C. Topology-based Model
Both homogenous scan-based models and localized scan-

based models reflect unstructured worms’ propagation without
regard to topological constraints. However, a topology-based
model describes a structure dependent propagation of worms,
which relies on the topology for the spreading of viruses such
as email worms [14], p2p worms [13], [86], and social network
worms [57], [46], [51]. In this subsection, we introduce some
typical topology-based discrete-time models.

1) Email Worms Simulation Model: Zou et al. [14] pre-
sented a simulation model on the propagation of email worms.
It considered the probability of opening an email attachment
and email checking frequency, and then compared internet
email worm propagation on power law topologies, small world
topologies and random graph topologies. In the proposed
model, the probability of each user opening a worm attachment
can be treated as an infected probability and the distribution
of email checking times can represent the propagation proba-
bility.

Due to the high likelihood that email users will also receive
email from those they send email to, the Internet’s email
network is modeled as an undirected graph. According to
the distribution of Yahoo! Email groups, authors believe the
Internet email network conforms to a heavy-tailed distribution
and model the email network topology as a power law
network, which follows F (α) ∝ K−α. The constant α is the
power law exponent that determines the degrees of nodes in
the network. A larger maximum topology degree requires a
larger power law exponent, and a larger expected value of
topology degree demands a smaller power law exponent. This
model uses α = 1.7 to generate the power law network with
the total number of hosts |V | = 100000 and an average degree
of 8. The highest degree for this power law network is 1833
and the lowest degree is 3.

Email worms depend on email users’ interaction to spread.
When a user checks an email with a malicious attachment,
this user may discard it or open the worm attachment without
any security awareness. This user’s behavior is represented
by an opening probability C ∼ N(0.5, 0.32) in this model.
Then, when a malicious email attachment is opened, the email
worm immediately infects the user and sends out a worm
email to all email addresses found on this user’s computer.
Thus, the email checking time is an important parameter that
contributes to the propagation speed of the email worm. In this
simulation model, the email checking time T follows a Gaus-
sian distribution: T ∼ N(40, 202). This model discusses two
cases under different infection assumptions: non-reinfection
and reinfection. The main difference is whether a user in the
infectious state can be infected again. If the victims can be
infected each time they are visited by worms, it is assumed to
be a reinfection scenario. Otherwise, infected users send out
worm copies only once even if they open a worm attachment
again. We refer to this as a non-reinfection scenario. This
email simulation model only considers the propagation of
reinfection email worms, which is described in Algorithm 1.
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Algorithm 1
Simulation Model: The discrete-time email worm simulator

/* step 1: Initialize parameters */
1. initialize the number of infected nodes infectednum;
2. initialize the email checking time CheckingT ime and
opening probability OpeningProb (both follow Gaussian
distribution);
3. initialize the number of worm emails: V irusNum,
NextV irusNum;
4. timetick = 1;

/* step 2: Sending worm emails*/
timetick = timetick + 1;
for i = 1 to the number of total email users do

if (user i is not HEALTHY or timetick == 2) then
if (user i is checking emails) then

if (user i is DANGER) then
user i is INFECTED;
infectednum = infectednum+ 1;

end if
for sendnum = 1 to the number of worm emails

do
for link = 1 to all the links of user i do

if (user i opens a worm attachment) then
sending worm emails;

end if
end for

end for
the number of user i’s worm email is reset as 0

end if
end if

end for

/* step 3: Update Current Node Status */
for i = 1 to the number of total email users do

if (the number of worm emails is not 0) then
if (user i doesn’t check the email) then

if (user i is not INFECTED) then
user i is DANGER;

end if
record the number of worm attachments user i

received newly
reset user i’s CheckingT ime(i);

end if
else

record the total number of worm attachments user i
received

end if
user i’s CheckingT ime− 1;

end for
Re InfectedNum(timetick) = infectednum;

According to the discrete-time email worm simulator, the
propagation of email worms on a power-law network under
the non-reinfection and reinfection scenarios, as shown in
Fig. 7, illustrate that the spreading speed in the reinfection
case is faster and the number of infected hosts at the end
of propagation is higher than the non-reinfection case. Based
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Fig. 7. Propagation on a power-law network: reinfection vs. non-reinfection

on this simulation model, Zou et al. studied the selective
immunization defense against email worms. According to their
analysis, in a power law topology, if the top 29% of the most-
connected nodes are removed from the network, the email
network will be broken into separated fragments and no worm
outbreak will occur.

2) Logic 0-1 Matrix Model: Fan and Xiang [13] used
a logic matrix approach to model the spreading of P2P
worms. They presented two different topologies: a simple
random graph topology and a pseudo power law topology.
The research studied their impacts on a P2P worm’s attack
performance and analyzed related quarantine strategies for
these two topologies. This model uses a logic matrix (denoted
by matrix T ) to represent the topology of a P2P overlay
network. It adopts two constants of logic type (True or 1, False
or 0) as the value of matrix variables. The logic constant ’T’
indicates the existence of a directed link between two nodes in
the network, and the logic constant ’F’ is used to indicate there
is no directed link. The i-th row of a topology logic matrix
represents all outbound links of node i; and the j-th column
of the topology logic matrix represents all inbound links of
node j. This 0-1 matrix stands for the propagation ability of
nodes, i.e. whether they can allow the virus to spread or not.

This logic 0-1 matrix model is a discrete-time determin-
istic propagation model of P2P worms under three different
distributions: infectious state (denoted by logic vector S),
vulnerability status (denoted by logic vector V) and quarantine
status (denoted by logic vector Q). Where the logic vector
Sg represents the current state g of the logical P2P overlay
network and the logic vector Sg+1 represents the next state of
the logical P2P overlay network, we have:

Sg+1 = Sg + Snew
g (18)

Here, 1-entries in the vector Snew
g represent the transition

to infectious at state g + 1. Snew
g varies in consideration

of different distributions of S, V, and Q. If all nodes are
vulnerable to the worm and no nodes are quarantined, then
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we have (19):

Sg+1 = Sg + SgT (19)

If all nodes are not vulnerable to the worm and no nodes are
quarantined, then we have (20):

Sg+1 = Sg + SgTV (20)

If all nodes are vulnerable and some nodes are quarantined,
then we have (21):

Sg+1 = Sg + SgT Q̄ (21)

where Q̄ stands for the distribution of those unquarantined
nodes.

This logic 0-1 matrix model translates the propagation
processes of P2P worms into a sequence of logic matrix
operations. According to the analysis of this model, authors
discovered the relation between out-degree, vulnerability and
coverage rate in power law topologies and simple random
graph topologies respectively, and then proposed quarantine
strategies against P2P worms.

3) OSN (Online Social Networks) Worms Model: Fan and
Yeung [46] proposed two virus propagation models based
on the application network of Facebook, which is the most
popular among social network service providers. The dif-
ference between email worms and Facebook worms, as the
authors highlight, is that people only check if there are any
new emails and then log out, while people spend more time
on Facebook. In Facebook, two users’ accounts appear in
each other’s friends list if they have confirmed their status
to be friends. Thus, the topology of this network is treated
as an undirected graph and is constructed by a power-law
distribution in the models.

Facebook application platform based model: since Face-
book provides an application platform that can be utilized by
attackers to publish malicious applications, one of the worm
propagation models is based on the Facebook application
platform. Users of Facebook can install applications to their
accounts through this platform. If a user added a malicious
application, their account is infected and an invited message
is sent to all their friends to persuade them to install the
same application, which leads to the spreading of the worm
application. The probability of installing one application for
user i is:

Puser(i, t) =
AppSi(t)

ρ + inituser∑Nuser

j=1 (AppSj(t)ρ + inituser)
(22)

where Appsi(t) is the number of applications that user i has
installed at time step t. The parameter ρ reflects the effect of
preferential installation. inituser is used to show the initial
probability Puser(i, t) of a user who does not install any
application. Since there are many new installations every day,
the probability of one application selected by user i from the
application list is:

Papp(k, t) =
Installk(t) + inituser∑Napp

j=1 (Installj(t) + inituser)
(23)

where initapp defines the initial probability Papp(k, t) of
an application without any installation. When a malicious
application is installed, invitation messages are sent to all the
friends of this infected user. Assuming each user has received
c invitations at time step t. Then the probability the user is
infected is:

Pvirus =
α

(1− InstallNapp (t)

Nuser
· APPSi(t)

Napp
)c

(24)

where σ is the percentage of users who accepted the invita-
tions. The infected number I(t) is changed when a malicious
application is installed.

Sending messages based model: this model investigates the
propagation of worms through the sending of messages to
friends, which is similar to email worm propagation. When
users of Facebook receive malicious emails and click them,
these users are infected and worm email copies are sent to
their friends. At each time tick, a user can log-in to Facebook
with a log-in time Tlogin(i), which follows an exponential
distribution. The mean value of Tlogin(i) follows a Gaussian
distribution N(μTl(t), σ

2
Tl). The online time that users spend

on Facebook is Tonline(i), which follows a Gaussian distri-
bution N(μTo(t), σ

2
To). All of the online users may open the

malicious email with a probability of Pclick, which follows
a Gaussian distribution N(μp(t), σ

2
p). The worm propagates

until no more new users are infected in the online social
network.

4) Spatial-temporal Model: In the work of Chen and Ji
[68], a spatial-temporal random process was used to describe
the statistical dependence of malware propagation in arbitrary
topologies. This spatial-temporal model is a stochastic dis-
crete time model that reflects the temporal dependence and
the spatial dependence in the propagation of malware. The
temporal dependence means that the status of node i (infected
or susceptible) at time t+1 depends on the status of node i at
time t and the status of its neighbors at time t. The temporal
dependence of node i can be shown as (25) and (26):

P (Xi(t+ 1) = 0 | Xi(t) = 0) = δi (25)

P (Xi(t+ 1) = 1 | Xi(t) = 0, XNi(t) = xNi(t)) = βi(t)
(26)

where Xi(t) denotes the status of a network node i at time
t (t represents discrete time): if node i is infected at time,
Xi(t) = 1; if node i is susceptible at time t, Xi(t) = 0.
XNi(t) is used to denote the status of all neighbors of node i
at time t and the vector xNi(t) is the realization of XNi(t). If
node i is susceptible at time t, it can be compromised by any
of its infected neighbors and become infected at the next time
step t+1 with a birth rate βi(t). Otherwise, node i is infected
and has a death rate δi to recover at the next time step t+ 1.
The transition probabilities characterize the temporal evolution
due to infection and recovery.

Denoting by Ri(t), the probability that node i recovers from
infected to susceptible status at time t+ 1, is:

Ri(t) = P (Xi(t+ 1) = 0, Xi(t) = 1) = δiP (Xi(t) = 1)
(27)
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If node i is susceptible at time t, the probability that node i
remains susceptible at the next time step can be defined as:

Si(t) = P (Xi(t+ 1) = 0|Xi(t) = 0)

=
∑

xNi
(t)

[P (XNi(t) = xNi(t)|Xi(t) = 0)(1− βi(t))]

(28)

where a joint probability P (XNi(t) = xNi(t) | Xi(t) = 0)
representing the status of all neighbors of node i at time t
characterizes the spatial dependence according to the network
topology and the interaction between nodes. Based on (27)
and (28), the probability that node i is infected at time t+ 1
can be represented by (29).

P (Xi(t+ 1) = 1) = 1−Ri(t)− Si(t)P (Xi(t) = 0) (29)

Formula (24) reflects an iteration process of malware propaga-
tion according to the status of a node at time t and the status of
all neighbors of this node i at time t, which characterizes the
spatial and temporal statistical dependencies. Consequently,
the expected number of infected nodes at time t, n(t), can be
computed:

n(t) = E�
∑M

i=1
Xi(t)	 =

∑M

i=1
P (Xi(t) = 1) (30)

Though (24) can be used to study the behavior of malware
propagation, the cost of computing Si(t) is large especially
when a node has a great number of neighbors. Therefore,
authors presented two models to simplify the challenge posed
by the spatial dependence: the Independent Model and the
Markov Model.

The Independent Model assumes that the status of all nodes
at time t is spatially independent. This means no propagation
cycles are formed when worms propagate via some inter-
mediate nodes because the infected probability of a node is
not influenced by its neighbors. Thus, the independent model
neglects the spatial dependence. However, the status of a node
at a given time is related to its status at the last time tick and
thus, it still remains temporally dependent. The state evolution
of node i in the independent model can be represented by (31):

P (Xi(t+ 1) = 1) = 1−Ri(t)− Sind
i (t)P (Xi(t) = 0) (31)

where
Sind
i (t) =

∏

j∈Ni

�1− βjiP (Xj(t) = 1)	

The Markov Model assumes that the status of a node is
related to its neighbors, but its neighbors cannot be influenced
by each other at the same time. This assumption can result in
propagation cycles via a single intermediate node, however
this can be solved with conditional independence in the
network space. If the status of node i’s neighbors at the same
time step is spatially independent give the status of node i,
then the state evolution of a node in the Markov model can
be represented by (32):

P (Xi(t+1) = 1) = 1−Ri(t)−Smar
i (t)P (Xi(t) = 0) (32)

where

Smar
i (t) =

∏

j∈Ni

�1− βjiP (Xj(t) = 1|Xi(t) = 0)	

D. Comparison of Worm Propagation Models

A comparison of the various mathematical models of worms
discussed above is summarized in Table I. The classical
simple epidemic model is the most widely used model for
investigating the propagation of scan-based worms using a
continuous-time differential equation. Some previous works,
such as the uniform scan worm model and the RCS model,
are derived from the classical simple epidemic model, which
assumes two states for all hosts: susceptible and infectious, and
will stay in the infectious state forever when a host is infected.
However, these models are not suitable for cases where
the infected and infectious nodes are patched or removed.
Consequently, the classical general epidemic model (Kermack-
McKendrick model) has been proposed to extend simple epi-
demic models by introducing a removal process of infectious
peers. Continued improvements [39], [87] on modeling worm
propagation have considered immunization defense. Zou et al.
[39] proposed a two-factor worm model, which developed the
general epidemic model by taking into account both the effect
of human countermeasures and decreases in the infection rate.

The above models adopt a continuous-time differential
equation to observe and predict worm spreading in the
network. As scanning IP addresses or logical neighbors is
usually performed in discrete time [88], a host cannot infect
other hosts before it is infected completely. Thus, strictly
speaking, the propagation of worms is a discrete event process.
A continuous-time model can possibly result in a different
spreading speed and infected scale because a host begins
devoting itself to infecting other hosts even though only a
”small part” of it is infected. Consequently, modeling worm
propagation at each discrete time tick is more accurate than
using continuous time. The AAWP model, the LAAWP model
and the Bluetooth worm model are constructed according
to a discrete event process. The AAWP model characterizes
the spread of active worms that employ random scanning.
LAAWP is extended from the AAWP model and takes into
account the characteristics of local subnet scanning worms
spreading. The Bluetooth worm model analyzes the propa-
gation dynamics of Bluetooth worms. It captures not only
the behavior of the Bluetooth protocol but also the impact
of mobility patterns on the propagation of Bluetooth worms.

All of the above models including continuous-time and
discrete-time rely on the homogenous mixing assumption
that any infected host has equal opportunity to infect any
vulnerable host in the network. However, worms that use
a localized scanning strategy, such as Code Red II, require
non-homogenous consideration of population locality [10].
Consequently, the local preference model assumes a local
preference scanning worm has probability p to uniformly scan
addresses which share its first n bits in the network and
probability (1−p) to uniformly scan other addresses. Besides,
Zou et al. [14] analyzed the propagation of email worms and
pointed out that models based on the homogenous mixing
assumption overestimate the propagation speed of an epidemic
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TABLE I
A COMPARISON OF WORM PROPAGATION MODELS

Worm Propagation Models Network Topology
Graphical
Representation
of Topology

Modeling
Method

Propagation
Process

Model Type Infection Type

Classical Simple Epidemic Model H UG A C SI Not considered
Uniform Scan Worm Model H UG A C SI Not considered
RCS Model H UG A C SI Not considered
Classical General Epidemic Model H UG A C SIR Not considered
Two-factor Model H UG A C SIR Not considered
AAWP Model H UG A D SIR Non-reinfection
Bluetooth Worm Model H UG A D SI Not considered
Local Preference Model Non-H UG A C SI Not considered
LAAWP Model Non-H UG A D SIR Non-reinfection
Email Worms Simulation Model R/SW/PL UG S D SI Reinfection
Logic 0-1 Matrix Model R/PL DG A D SIR Non-reinfection
OSN Worms Model PL UG S D SI Non-reinfection
Spatial-temporal Model H/PL DG A D SIS Non-reinfection
H: homogenous mixing; R: random network; SW: small-world network; PL: power-law network;
UG: undirected graph; DG: directed graph;
C: continuous-time event; D: discrete-time event;
A: analytical; S: simulation;
SI: susceptible-infected model; SIR: susceptible-infected-recovered model; SIS: susceptible-infected-susceptible model

in a topological network, especially in the early stages when
a small number of nodes are infected and clustered with each
other. In order to avoid overestimation, the researchers provide
a discrete-time simulation model and mainly study the email
worm propagation over a power-law topology. This simula-
tion model can more accurately simulate the propagation of
email worms than previous homogenous mixing differential
equation models. However, this model describes the email
worm propagation tendency instead of modeling the dynamic
spreading procedure between each pair of nodes. Secondly,
they discussed the lower bound for the non-reinfection case,
but their model is not capable of accurately eliminating the
errors caused by reinfection. Moreover, some assumptions are
not realistic. For example, the authors believe that just one
malicious email copy will be sent to recipients even if an
infected user checks multiple emails containing worms. In
reality, a malicious copy is sent whenever the infected user
opens a re-infection worm email.

This logic 0-1 matrix model employs a logic matrix to
represent links between each pair of hosts and models the
spreading of peer-to-peer worms over a pseudo power-law
topology. This model can examine deep inside the propagation
procedure among nodes in the network. The model cannot
avoid propagation cycles formed among intermediate nodes
although it does not allow peers to have outbound links to
themselves. These propagation cycles lead to the overestima-
tion in the scale of the infected network. Besides this, their
logic matrix is weak regarding an email resembling network
because the weight of each link is a probability value ranging
from zero to one instead of constant zero or one. The model
does not consider the propagation probability and infected
probability of each node, which has significant impacts on
the infection procedure.

Social networks have become attractive targets for worms.
Fan and Yeung [46] proposed the OSN worm model to
characterize the behavior of a worm spreading on the ap-
plication network of Facebook. However, these two models
assume a user starts infecting others at every moment once

the user is infected. In practice however, infected users spread
worms only as they periodically accept invitations and install
malicious applications or check newly received messages and
open malicious links. As a result, they have neglected a real-
istic temporal delay process. Furthermore, the second model
simulates the scenario of non-reinfection worm propagation,
however non-reinfection worms mainly appear in the early
worm cases and are not appropriate for modeling modern
email worms that spread over social networks.

The above models assume computer users behave inde-
pendently, that is, the status of all hosts at the same time
step is spatially independent. In real scenarios, however, the
propagation of topology-based worms needs human activation
and thus the spreading procedure is spatial and temporally
dependent. Chen et al. [68] used a spatial-temporal ran-
dom process to describe the statistical dependence of worm
propagation in arbitrary topologies. Although this model can
outperform the previous models through capturing temporal
dependence and detailed topology information, there are also
some weak assumptions made. Firstly, this model adopts a
SIS model, even though infected users are not likely to be
infected again after they clean their computers by patching
vulnerabilities or updating anti-virus software. Secondly, their
model assumes that an infected computer cannot be reinfected.
However, recent email worms often reinfect users, and are far
more aggressive in spreading throughout the network. Thirdly,
the authors ignore an important consideration regarding human
behavior; the email checking time, which has been shown to
greatly affect the propagation of email worms.

VI. DISCUSSION

A. Limitations

In order to eradicate topology-based worms, as well as
to control and limit the impact of their outbreak, previous
works [13], [14], [57] presented certain strategies to immunize
a group of users in the network to prevent topology-based
worms from propagating to a large scale. However, how to
choose the appropriate size and membership of this subset
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to constrain topological worm spreading remains a difficult
question. A common view for the preferable positions of
defense is at the highly-connected users [13], [14] or those
with most active neighbors [57]. Indeed, popular users in a
scale-free network and their intuitively short paths to other
nodes in a strongly clustered small world [49], [51] greatly fa-
cilitate the propagation of an infection over the whole network,
particularly at their early stage. However, counter-intuitively,
recent research [69] suggested that this viewpoint may not be
always the truth. Further discussion on this problem will be
presented in our future work.

To the best of our knowledge, all existing works use
simulation to evaluate their effectiveness. In general, people
may question the accuracy of the proposed models since
there is no evidence from the real world. Therefore, the
first challenge in this field is to collect available real data
to support the validation process. Moreover, the propagation
of worms is actually affected by many factors such as time
zone [89], human involvement [57]. However, seldom previous
works have examined the impact of those parameters. Thus,
another challenge in this field is to comprehensively analyze
the overall impact on the propagation procedure of worms.
Currently, social networks become more and more popular. In
the meantime, an increasing number of social network worms
appear and become severe threats to the Internet. In the future,
modeling worms’ propagation on social networks will draw
more attention in our research.

Furthermore, mobile communication and cloud computing
technologies boosted in recent years. Besides, virtual environ-
ment has also been widely applied in both research and indus-
tries. The worms can take advantage of these platforms and
spread widely, such as mobile computing worms [12], cloud
computing worms [90], worms spreading in virtual machine
[91]. In order to understand the propagation properties of these
worms, current researchers have extended previous models
to present their propagation dynamics. The key point of this
work is to capture the specific spreading characteristics so that
the proposed models can accurately disclose the propagation
procedure of these worms. This is one of our future works.

B. Lessons Learned

Computer worm modeling is crucial for understanding the
dynamic impact of worm attacks. It provides a comprehensive
approach to help researchers study the fundamental spreading
patterns that characterize a worm outbreak. On the basis
of it, people can then predict their potential damages and
develop effective countermeasures. The modeling consists of
building either a simulation model [14], [57], [46], [73], [92]
or an analytical model [68], [71]. Simulation is an effective
technique that is used to understand and study the tendency
of worm propagation. Researchers can derive the probability
of either state for each node by averaging many runs of
simulation, but simulation models cannot quantify the reasons
why initial parameters result in such probabilities, and further
disclose the essence. For example, Zou et al. [14] relied on
simulation modeling rather than on mathematical analysis.
Their paper demonstrates a fairly comprehensive analysis on
the impact of various parameters, different topologies and

selective percolation. However, this model describes the email
worm propagation tendency instead of modeling the dynamic
spreading procedure between each pair of nodes. Thus, it
poorly estimates the spreading speed of email worms. In
addition, the works [14], [57], [46], [73] rely on simulations
to model the propagation of social network worms. Their
simulation models avoid the problem of ”homogeneous mix-
ing” assumption but cannot provide analytical study on the
propagation. On the contrary, the analytical method can give us
an insight into the impact of each worm or network parameter
on the propagation of the worm. An accurate analytical model
allows researchers to comprehensively study how a worm
propagates under various conditions. For instance, Wen et al.
[69] adopted an analytical method to locate the most suitable
positions for slowing down the worm propagation. Based
on the proposed analytical model, they investigate deeply
on locating the best positions for thwarting the propagation
of topology-based worms. It helps efficiently suppress the
infected scale of the network and decrease the spreading speed
of topological worms. The results of this paper support the fact
that the most popular nodes may not be the most important
nodes to prevent the propagation of worms. However, which
group of nodes are the most important nodes is still hard to be
answered from their work. Moreover, The works [45], [77],
[93] used analytical models and focused on finding threshold
conditions for fast extinction of worms.

VII. CONCLUSION

Worms and their variants are widely believed to be one
of the most serious challenges in network security research.
Although in recent years propagation mechanisms used by
worms have evolved with the proliferation of data transmis-
sion, instant messages and other communication technologies,
scan-based techniques and topology-based techniques are still
the two main means for the spreading of worms. Modeling
the propagation of worms can help us understand how worms
spread and enable us to devise effective defense strategies.
Therefore, a variety of models have been proposed for model-
ing the propagation mechanism. This survey firstly introduced
the target discovery techniques for scan-based worms and
topology-based worms respectively, illustrating their scanning
methods with graphical representations. Secondly, it analyzed
the characteristics of four common topologies for modeling
worm propagation. Finally, this survey has described some
typical mathematical models of worms that are the analytical
tools for investigating dynamics and measuring the propaga-
tion of worms. We compared these modes and discussed the
pros and cons of each model. An ideal worm propagation
model can reflect accurate spreading tendency as time elapsed.
However, topology-based worms, such as social network
worms, rely on the topology of social networks, which may
result in a problem of spatial dependence in the propagation
procedure. This means that compromised users will infect
their neighbors but the probabilities for those compromised
users being infected may be due to their neighbors having
been infected before and then spreading the worm to these
compromised users. This results in redundant computation
of infection probabilities. In order to simplify this problem,
some research has assumed the status of all nodes at each
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time tick to be spatially independent. However, it is a weak
approximation to the spreading dynamics. Therefore, it is
worthwhile to discover what the spatial dependence is and
how to approximate it so that we can eliminate the redundancy,
describe the real spreading probability and provide an accurate
propagation trend.
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